电化学(中英文) ›› 2022, Vol. 28 ›› Issue (1): 2106211. doi: 10.13208/j.electrochem.210621
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2021-06-21
修回日期:
2021-08-03
出版日期:
2022-01-28
发布日期:
2021-08-05
Received:
2021-06-21
Revised:
2021-08-03
Published:
2022-01-28
Online:
2021-08-05
Contact:
* E-mail: 摘要:
过渡金属磷化物(TMP)作为一种理想的甲醇电氧化助催化剂,因其具有多功能活性位点、结构和组成可调、独特的物理化学性质和高效的多组分协同效应等优势而受到越来越多的关注。本文综述了过渡金属磷化物促进甲醇电氧化的研究进展,包括催化剂的制备及其催化甲醇电氧化的性能评估。首先,介绍了TMP对催化甲醇氧化反应的促进作用,然后在正文中讨论了基于不同金属中心的TMP催化剂体系的制备与性能研究。从电子效应和基于双功能催化机制的亲氧性来看,TMPs对催化甲醇氧化有明显的促进作用。最后,我们讨论了在催化剂理性设计及其催化机理探索和燃料电池装置应用中应注意的问题和挑战,希望对新型催化剂体系的设计和制备有一定的指导意义。
李萌, 冯立纲. 磷化物助力铂基催化剂甲醇电氧化的研究进展[J]. 电化学(中英文), 2022, 28(1): 2106211.
Meng Li, Li-Gang Feng. Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol[J]. Journal of Electrochemistry, 2022, 28(1): 2106211.
Figure 1
(A) High-resolution transmission electron microscopic image of a Pt-Ni2P/C-30% sample, (B) cyclic voltammograms and (C) power-density curves for fuel cells employing Pt-Ni2P/C-30%, Pt-Ni/C, Pt-P/C, Pt/C-JM and Pt/C-H as anode catalysts[25]. Steady-state polarization curves (D) and power-density curves for fuel cells employing (E) PtRu-Ni2P/C-40%, (F) commercial PtRu/C-JM as anode catalysts[37]. (G) High-resolution XPS spectra of Pt 4f, (H) CV curves of the prepared catalysts measured in 0.5 mol·L-1 H2SO4 containing 1 mol·L-1 CH3OH at a scan rate of 50 mV·s-1 and (I) specific activity and mass activity at the peak potential for methanol oxidation[26]. (color on line)
Figure 2
(A-B) TEM images of Pt-Fe2P sample, (C) cyclic voltammograms of Pt-Fe2P and Pt/C catalysts for methanol oxidation[27]. (D)The electrocatalytic performance of different PtRu catalysts for methanol electro-oxidation; (E) Chronoamperometric curves of different PtRu catalysts in 0.5 mol·L-1 H2SO4/1 mol·L-1 CH3OH solution at 0.6 V for 3600 s; (F) COads stripping voltammograms of PtRu@FeP 1:1, PtRu/C-H and PtRu/C-JM catalysts in 0.5 mol·L-1 H2SO4 solution[20]. (color on line)
Figure 3
(A) Cyclic voltammetric curves of Co2P/C, commercial Pt/C, Pt/Cfree, and Pt-Co2P/C catalysts at 50 mV·s-1 in acidic electrolytes[42]. (B) Power-density curves for fuel cells employing PtRu-CoP/C-40% and (C) discharge curves at 0.3 V (50 oC) for fuel cells employing PtRu-CoP/C-40%, commercial PtRu/C-JM and PtRu/C-H as anode catalysts[43]. The multi-step attenuated total reflectance surface-enhanced infrared absorption spectroscopic curves on (D) the Pt/C-JM and (E) the Pt-CoP/C electrodes, and discharge curves (F) at 0.3 V (70 oC) for fuel cells employing different catalysts[35]. (color on line)
Table 1
Transition metal phosphide promoters reported for methanol oxidation.
Catalyst | Mass activity/(mA·mgPt-1) | Specific activity/(mA·cm-2) | Reference |
---|---|---|---|
Pt-WP/C | 1559.3 | / | [ |
Pt-FeNi2P/C | 1125 | 1.24 | [ |
PtRu@FeP 1:1 | 700 mA·mgPtRu-1 | 1 | [ |
Pt-Ni2P/C-30% | 1432 | 4.049 | [ |
20%Pt-Ni2P-G | 1554.6 | 1.643 | [ |
Pt-Fe2P | 1039 | 1.29 | [ |
Pt/C-Cu3P 50% | 578.02 | 2.02 | [ |
PtRu-Ni2P/C-40% | 518.8 mA·mgPtRu-1 | 0.459 | [ |
Pt/FeP | / | 0.994 | [ |
Pt-Co2P/C | 1236.8 | / | [ |
PtRu-CoP/C-40% | 670.5 mA·mgPtRu-1 | 0.577 | [ |
Pt-CoP/C-30% | 1706.41 | 2.09 | [ |
Pt-4% CoP/CNTs | 1600 | 2.15 | [ |
Pt-MoP/C | 1860.7 | / | [ |
Pt-MoP/MWCNTs-3 | 1063 | / | [ |
Pt-MoP/C-2 | 680.7 | / | [ |
Pt-WP-CL/AEG | 2234 | / | [ |
Ni2P-NiP2-Pt/ CNTs | 435.2 | 1.14 | [ |
Pt-Ni HSNs | 2170 | / | [ |
[1] |
Munjewar S S, Thombre S B, Mallick R K. Approaches to overcome the barrier issues of passive direct methanol fuel cell-Review[J]. Renew. Sust. Energ. Rev., 2017, 67: 1087-1104.
doi: 10.1016/j.rser.2016.09.002 URL |
[2] |
Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. J. Phys. Chem. C, 2008, 112(39): 15595-15601.
doi: 10.1021/jp805374p URL |
[3] |
Cai Z C, Kamiko M, Yamada I, Yagi S. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes[J]. ACS Appl. Nano Mater., 2021, 4(2): 1445-1454.
doi: 10.1021/acsanm.0c02977 URL |
[4] |
Abdelkareem M A, Lootah M A, Sayed E T, Wilberforce T, Alawadhi H, Yousef B A A, Olabi A G. Fuel cells for carbon capture applications[J]. Sci. Total Environ., 2021, 769: 144243.
doi: 10.1016/j.scitotenv.2020.144243 URL |
[5] |
Casalegno A, Bresciani F, Zago M, Marchesi R. Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests[J]. J. Power Sources, 2014, 249: 103-109.
doi: 10.1016/j.jpowsour.2013.10.032 URL |
[6] |
Zhong C J, Luo J, Njoki P N, Mott D, Wanjala B, Loukra-kpam R, Lim S, Wang L Y, Fang B, Xu Z C. Fuel cell technology: nano-engineered multimetallic catalysts[J]. Energy Environ. Sci., 2008, 1(4): 454-466.
doi: 10.1039/b810734n URL |
[7] |
Xia Z X, Zhang X M, Sun H, Wang S L, Sun G Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048.
doi: 10.1016/j.nanoen.2019.104048 URL |
[8] |
Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski R E, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells[J]. ACS Catal., 2019, 9(5): 3764-3772.
doi: 10.1021/acscatal.8b04883 URL |
[9] |
Li H Y, Wu X S, Tao X L, Lu Y, Wang Y W. Direct synjournal of ultrathin Pt nanowire arrays as catalysts for methanol oxidation[J]. Small, 2020, 16(33): 2001135.
doi: 10.1002/smll.v16.33 URL |
[10] |
Zhang Y Q, Shi Y L, Chen R, Tao L, Xie C, Liu D D, Yan D F, Wang S Y. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. J. Mater. Chem. A, 2018, 6(45): 23028-23033.
doi: 10.1039/C8TA08636B URL |
[11] |
Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu G C, Lee J K, Wang X D. A study on fuel additive of methanol for room temperature direct methanol fuel cells[J]. Energy Convers. Manage., 2018, 168: 270-275.
doi: 10.1016/j.enconman.2018.05.006 URL |
[12] |
Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N Y. Atomic carbon layers supported Pt nanoparticles for minimized CO Poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951.
doi: 10.1002/smll.v15.38 URL |
[13] | Ramli Z A C, Kamarudin S K. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review[J]. Nano-scale Res. Lett., 2018, 13(1): 410. |
[14] |
Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019, 11(4): 1238-1243.
doi: 10.1002/cctc.v11.4 URL |
[15] |
Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23046-23050.
doi: 10.1021/acsami.0c06460 URL |
[16] |
Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C, Ge C. Plasma-induced synjournal of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410.
doi: 10.1016/j.apsusc.2016.12.095 URL |
[17] |
Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33572-33582.
doi: 10.1021/acsami.6b09756 URL |
[18] |
Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J C, Fan W B. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.
doi: 10.1021/acsami.0c08912 URL |
[19] |
Wei D Y, Ma L, Gan M Y, Han S C, Shen J, Ding J J, Zhan W, Zhou C L, Zhong X J, Xie F. Pt-based catalyst decorated by bimetallic FeNi2P with outstanding CO tolerance and catalytic activity for methanol electrooxidation[J]. Int. J. Hydrogen Energy, 2020, 45(7): 4875-4886.
doi: 10.1016/j.ijhydene.2019.12.064 URL |
[20] | Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nano-scale, 2019, 11(40): 18866-18873. |
[21] | Liu D N, Lu W B, Wang K Y, Du G, Asiri A M, Lu Q, Sun X P。 Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology, 2016, 27(44): 44LT02. |
[22] |
Cui X Z, Zhu Y, Hua Z L, Feng J W, Liu Z W, Chen L S, Shi J L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation[J]. Energ Environ Sci., 2015, 8(4): 1261-1266.
doi: 10.1039/C5EE00240K URL |
[23] |
Jiang X F, Wang X B, Shen L M, Wu Q, Wang Y N, Ma Y W, Wang X Z, Hu Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nano-cages for methanol electrooxidation[J]. Chin. J. Catal., 2016, 37(7): 1149-1155.
doi: 10.1016/S1872-2067(15)61117-2 URL |
[24] |
Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H. General synjournal of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale, 2014, 6(11): 5762-5769.
doi: 10.1039/C3NR06084E URL |
[25] |
Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628.
doi: 10.1039/c4ee00100a URL |
[26] |
Liu H, Yang D W, Bao Y F, Yu X, Feng L G. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. J. Power Sources, 2019, 434: 226754.
doi: 10.1016/j.jpowsour.2019.226754 URL |
[27] | Wang F L, Fang B, Yu X, Feng L G. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Appl. Mater. In-terfaces, 2019, 11(9): 9496-9503. |
[28] |
Li R X, Ma Z Z, Zhang F, Meng H J, Wang M, Bao X Q, Tang B, Wang X G. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation[J]. Electrochim. Acta, 2016, 220: 193-204.
doi: 10.1016/j.electacta.2016.10.105 URL |
[29] |
Chen S, Yang X, Tong X, Zhang F, Zou H, Qiao Y, Dong M, Wang J, Fan W. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979.
doi: 10.1021/acsami.0c08912 URL |
[30] |
Housmans T H M, Koper M T M. Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study[J]. J. Phys. Chem. B, 2003, 107(33): 8557-8567.
doi: 10.1021/jp034291k URL |
[31] |
Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60(3): 275-283.
doi: 10.1016/S0022-0728(75)80262-2 URL |
[32] | Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 10(8): 2654-2659. |
[33] |
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog. Phys., 1990, 53(10): 1253-1295.
doi: 10.1088/0034-4885/53/10/001 URL |
[34] |
Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf. Sci., 1991, 38(2): 103-144.
doi: 10.1016/0079-6816(91)90007-Q URL |
[35] |
Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016, 4(47): 18607-18613.
doi: 10.1039/C6TA07896F URL |
[36] |
Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B, Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh D Y, Dunin-Borkowski R E, Kovnir K, Kolen’ko Y V. Interface engineering in nanostructured nickel phosphide catalyst for efficient and stable water oxidation[J]. ACS Catal., 2017, 7(8): 5450-5455.
doi: 10.1021/acscatal.7b01954 URL |
[37] |
Chang J F, Feng L G, Liu C P, Xing W. Ni2P makes app-lication of the PtRu catalyst much stronger in direct meth-anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347.
doi: 10.1002/cssc.201500357 URL |
[38] |
Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Gra-phene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation[J]. RSC Adv., 2018, 8(15): 8228-8232.
doi: 10.1039/C7RA13303K URL |
[39] |
Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G P, Gao Y Z, Song Y. The enhanced CO tolerance of platinum supported on FeP nanosheet for superior catalytic activity toward methanol oxidation[J]. Electrochim. Acta, 2017, 254: 36-43.
doi: 10.1016/j.electacta.2017.09.099 URL |
[40] |
Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan K, Cabot A. Hierarchical CoP nanostructures on nickel foam as efficient bifunctional catalysts for water splitting[J]. ChemSusChem, 2021, 14(4): 1094-1102.
doi: 10.1002/cssc.v14.4 URL |
[41] |
Ji L L, Wang J Y, Teng X, Meyer T J, Chen Z F. CoP nano-frames as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catal., 2020, 10(1): 412-419.
doi: 10.1021/acscatal.9b03623 URL |
[42] |
Zhu J L, He G Q, Shen P K. A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation[J]. J. Power Sources, 2015, 275: 279-283.
doi: 10.1016/j.jpowsour.2014.11.004 URL |
[43] |
Feng L G, Li K, Chang J F, Liu C P, Xing W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells[J]. Nano Energy, 2015, 15: 462-469.
doi: 10.1016/j.nanoen.2015.05.007 URL |
[44] |
Li X, Wang H J, Yu H, Liu Z W, Wang H H, Peng F. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183.
doi: 10.1016/j.electacta.2015.10.128 URL |
[45] |
Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, Shang L, Yang X F, Yan D Q, Han F Y, Zhang T R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445.
doi: 10.1016/j.nanoen.2020.104445 URL |
[46] |
Jiao Y Q, Yan H J, Wang R H, Wang X W, Zhang X M, Wu A P, Tian C G, Jiang B J, Fu H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49596-49606.
doi: 10.1021/acsami.0c13533 URL |
[47] |
Bai J, Li X, Wang A J, Prins R, Wang Y. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP[J]. J. Catal., 2012, 287: 161-169.
doi: 10.1016/j.jcat.2011.12.018 URL |
[48] |
Zhu J L, Huang S L, Key J L, Nie S X, Ma S J, Shen P K. Facile synjournal of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation[J]. Catal. Sci. Technol., 2017, 7(24): 5974-5981.
doi: 10.1039/C7CY01835E URL |
[49] |
Zhou C L, Gan M Y, Xie F, Ma L, Ding J J, Shen J, Han S C, Wei D Y, Zhan W. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340.
doi: 10.1007/s11581-020-03707-1 URL |
[50] |
Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y, Zou J L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20): 7674-7682.
doi: 10.1039/C6TA01319H URL |
[51] |
Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z, Duan Y Q, Tang B, Zou J L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions[J]. J. Mater. Chem. A, 2018, 6(45): 22636-22644.
doi: 10.1039/C8TA08285E URL |
[52] |
Zhang F, Meng H J, Zhang W J, Wang M, Li J P, Wang X G. Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: A strengthened composite supporting effect[J]. Int. J. Hydrogen Energy, 2018, 43(6): 3203-3215.
doi: 10.1016/j.ijhydene.2017.12.157 URL |
[53] |
Li S, Tian Z Q, Liu Y, Jang Z, Hasan S W, Chen X, Tsiakaras P, Shen P K. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions[J]. Chin. J. Catal., 2021, 42(4): 648-657.
doi: 10.1016/S1872-2067(20)63680-4 URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[7] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[8] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[9] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[10] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[11] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[12] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[13] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[14] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[15] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||