电化学(中英文) ›› 2021, Vol. 27 ›› Issue (1): 35-44. doi: 10.13208/j.electrochem.200802
收稿日期:
2020-08-14
修回日期:
2020-08-27
出版日期:
2021-02-28
发布日期:
2020-09-17
通讯作者:
吴旭
E-mail:Profxuwu@hust.edu.cn
Received:
2020-08-14
Revised:
2020-08-27
Published:
2021-02-28
Online:
2020-09-17
Contact:
Xu Wu
E-mail:Profxuwu@hust.edu.cn
摘要:
钛基氧化铱电极作为DSA(dimension stable anode)中的典型电极,广泛应用于各个领域。目前工业生产的钛基氧化铱电极主要由传统热分解法制备,存在成本高昂,工艺繁琐,依赖人工劳动,无法大规模生产等问题,十分有必要探索开发新的制备技术。本文从沉积液配方、基底材料的选择及处理、电沉积方式以及沉积时间等方面系统地讨论了氧化铱电沉积制备技术的研究进展,包括作者课题组所作的一些工作及成果;分析了钛基氧化铱电极电沉积制备技术目前所面临的挑战,并给出一定建议;阐述了其应用前景,展望了其未来发展方向,希望更多的科研人员能投入到相关研究中。
吴丹丹, 吴旭. 钛基氧化铱电极电沉积制备技术研究进展[J]. 电化学(中英文), 2021, 27(1): 35-44.
Dan-Dan Wu, Xu Wu. Research Progress in Electrodeposition Technology of Titanium-Based Iridium Oxide Electrode[J]. Journal of Electrochemistry, 2021, 27(1): 35-44.
表1
钛基氧化铱电极制备技术简介及其特点[1,2,5-8]
Technology | Introduction | Characteristics |
---|---|---|
Thermal decomposition | Iridium-containing coating solution is coated on the pretreated titanium substrate by brushing, and then cementation so repeated. | Simple and widely applicated Process is cumbersome, and need manual labour |
Sol-gel method | The compound containing high chemically active components is solidified by solution, sol, gel, and then heat-treated to form oxide or other compound solids. | Scale is uniform and crystal grains are fine Preparation process is complicated and raw materials are expensive and harmful. |
Magnetron sputtering | Bombarding the target surface with energetic particles in a vacuum to deposit the bombarded particles on the substrate. | Deposition speed is fast, no impurities remain; Process and devices are complicated and high cost. |
Laser pulse deposition | A laser is used to bombard an object, and then the bombarded material is deposited on a certain substrate to obtain a thin film or a deposited layer. | Deposition rate is high. The large area can be deposited Film formation is not suitable, and high cost |
Electrodeposition | Iridium-containing metal salt ion undergoes oxidation or reduction reaction to deposit on the titanium substrate. | Coating has high cleanliness and homogeneity, high degree of mechanization, and process flow is simple. |
表2
氧化铱电沉积沉积液配方
Author | Composition of deposition solution | Instruction | Deposition Mechanism |
---|---|---|---|
Baur[ | IrCl4、C2H5OH、HCl、NaOH | C2H5OH: reduction;NaOH:regulate pH | IrCl42- + C2H5OH → Ir(OH2)2Cl- Ir(OH2)2Cl- → Ir2O3·xH2O |
Toniolo[ | IrCl4·xH2O、H2O2(30wt.%) Oxalic acid、K2CO3 | H2C2O4: As complex; K2CO3: regulate pH; H2O2: improve deposition efficiency | [Ir(C2O4) (OH)4]2- →IrO2 + 2CO2 + 2H2O + 2e- |
Michel[ | IrCl3、Oxalic acid、K2CO3 | H2C2O4: As complex; K2CO3: regulate pH; | [Ir(C2O4) (OH)4]3- →[Ir(C2O4) (OH)4]2- + e- [Ir(C2O4) (OH)4]2- → IrO2 + 2H2O + 2CO2 + e- |
Zhang Xing[ | (NH4)2IrCl6 (10g/L) Boric acid (40g/L) Sodium malonate | Boric acid: As solvent; Sodium malonate: Improving Stabilization | - |
表3
作者课题组氧化铱电沉积条件
Deposition recipes | Deposition condition |
---|---|
The molo ratio of oxalate and IrCl3 is 5:1 | Potentiostatic techniques: 0.8 V |
Adjust pH to 10.2 with K2CO3 | Temperature: Ambient |
Iridium ion concentration: 4 mmol·L-1 | Stirring: Magnetic |
The solution was kept at 40 ℃ for 4 d to allow stabilization. | Atmosphere: Air |
Deposition time: 30 min |
[1] |
Scialdone O, Randazzo S, Galia A, Filardo G. Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochim. Acta, 2009,54(4):1210-1217.
doi: 10.1016/j.electacta.2008.08.064 URL |
[2] |
Huang C A, Yang S W, Chen C Z, Hsu F Y. Electrochemical behavior of IrO2-Ta2O5/Ti anodes prepared with different surface pretreatments of Ti substrate[J]. Surf. Coat. Technol., 2017,320:270-278.
doi: 10.1016/j.surfcoat.2017.01.005 URL |
[3] |
Krysa J, Kule L, Mráz R, Rousar I. Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes[J]. J. Appl. Electrochem., 1996,26(10):999-1005.
doi: 10.1007/BF00242194 URL |
[4] |
Xiao J, Wu X, Yu W B, Liang S, Yu J W, Gu Y Y, Deng H L, Hu J K, Xiao K K, Yang J K. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate[J]. Chemosphere, 2017: 189:67-75.
doi: 10.1016/j.chemosphere.2017.09.034 URL pmid: 28926790 |
[5] |
Yu J G, Zhao X J, Zhao Q N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method[J]. Mater. Chem. Phys., 2001,69(1-3):25-29.
doi: 10.1016/S0254-0584(00)00291-1 URL |
[6] |
Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide[J]. J. Mater. Sci., 1994,29(6):1617-1622.
doi: 10.1007/BF00368935 URL |
[7] |
Thanawala S S, Baird R J, Georgiev D G, Auner G W. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings[J]. Appl. Surf. Sci., 2008,254(16):5164-5169.
doi: 10.1016/j.apsusc.2008.02.054 URL |
[8] |
Labou D, Slavcheva E, Schnakenberg U, Neophytides S. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode[J]. J. Power Sources, 2008,185(2):1073-1078.
doi: 10.1016/j.jpowsour.2008.08.013 URL |
[9] |
Lee B S, Ahn S H, Park H Y, Choi I, Yoo S J, Kim H J, Henkensmeier D, Kim J Y, Park S, Nam S W, Lee K Y, Jang J H. Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis[J]. Appl. Catal. B - Environ., 2015,179:285-291.
doi: 10.1016/j.apcatb.2015.05.027 URL |
[10] |
Pratsalfonso E, Abad L, Casanpastor N, Gonzalo-Ruiz J, Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples[J]. Biosens. Bioelectron., 2013,39(1):163-169.
doi: 10.1016/j.bios.2012.07.022 URL pmid: 22857994 |
[11] | Jin H. Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrOx films[D]. Southampton: University of Southampton, 2008. |
[12] |
Zhang Y L, Cao M M, Lü H, Wei J C, Gu Y Y, Liu D G, Zhang W B, Ryan M P, Wu X. Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm-2 for sludge dewatering electrolysers[J]. Electrochim. Acta, 2018,265:507-513.
doi: 10.1016/j.electacta.2018.01.190 URL |
[13] |
Wang J, Rivas G, Chicharro M. Glucose microsensors based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber[J]. J. Electroanal. Chem., 1997,439:55-61.
doi: 10.1016/S0022-0728(97)00371-9 URL |
[14] | N Ther J, K Ster F, Freudenberger R, Schoberl C, Lampke T. Electrochemical deposition of iridium and iridium-nickel-alloys[M]. IOP Conference Series: Materials Science and Engineering, 2017,181:012041. |
[15] | Jian X H, Tsai D S, Chung W H, Huang Y S, Liu F J. Pt-Ru and Pt-Mo electrodeposited onto Ir-IrO2 nanorods and their catalytic activities in methanol and ethanoloxidation[J]. J. Mater. Chem., 2009,19(11):1601-1607. |
[16] |
Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation[J]. J. Electroanal. Chem., 2005,579(1):83-88.
doi: 10.1016/j.jelechem.2005.01.030 URL |
[17] |
Yamanaka K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices[J]. Jpn. J. Appl. Phys., 1989,28(4):632-637.
doi: 10.1143/JJAP.28.632 URL |
[18] |
Baur J E, Spaine T W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide[J]. J. Electroanal. Chem., 1998,443(2):208-216.
doi: 10.1016/S0022-0728(97)00532-9 URL |
[19] |
Bezbaruah A N, Zhang T C. Fabrication of Anodically Electrodeposited Iridium Oxide Film pH Microelectrodes for Microenvironmental Studies[J]. Anal. Chem., 2002,74(22):5726-5733.
doi: 10.1021/ac020326l URL pmid: 12463355 |
[20] |
Casella I G, Contursi M, Toniolo R. Anodic electrodeposition of iridium oxide particles on glassy carbon surfaces and their electrochemical/SEM/XPS characterization[J]. J. Electroanal. Chem., 2015,736:147-152.
doi: 10.1016/j.jelechem.2014.11.012 URL |
[21] |
Petit M A, Plichon V. Anodic electrodeposition of iridium oxide films[J]. J. Electroanal. Chem., 1998,444(2):247-252.
doi: 10.1016/S0022-0728(97)00570-6 URL |
[22] | Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Effect of some factors in iridium plating on electroplated coating surface[J]. Met. Funct. Mater. (金属功能材料), 2012(4):46-49. |
[23] |
Shi Y H, Meng H M. Electrochemical behavior of IrO2 electrodes in the anodic electrodeposition of MnO2[J]. Acta Phys.-Chim. Sin., 2011,27(2):461-467.
doi: 10.3866/PKU.WHXB20110216 URL |
[24] | Wang J P(王锦鹏), Zhong X M(钟学明), Teng L J(滕乐金), Zhao Y(赵洋). Discussion on removal of the micropotassium from the solution of dihydrogen hexachloroiridate(IV)[J]. G D Chem. (广东化工), 2008,35(7):23-26. |
[25] | Kakooei S, Ismail M C, Wahjoedi B A. Electrochemical study of iridium oxide coating on stainless steel substrate[J]. Int. J. Electrochem. Sci., 2013,8(3):3290-3301. |
[26] |
Zhao C X, Yu H T, Li Y C, Li X H, Ding L, Fan L Z. Electrochemical controlled synjournal and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction[J]. J. Electroanal. Chem., 2013,688:269-274.
doi: 10.1016/j.jelechem.2012.08.032 URL |
[27] | Sun Z H(孙志华), Liu Y H(刘佑厚), Zhang X Y(张晓云), Tang Z H(汤智慧), Liu M H(刘明辉). A review of electroplating technology on titanium and titanium alloys[J]. Corros. Sci. Prot. Technol. (腐蚀与防护), 2005,26(11):493-496. |
[28] |
Yan Z W, Zhao Y W, Zhang Z Z, Li G, Li H C, Wang J S, Feng Z Q, Tang M Q, Yuan X J, Zhang R Z, Du Y Y. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochim. Acta, 2015,157:345-350.
doi: 10.1016/j.electacta.2015.01.005 URL |
[29] |
Aravind P, Selvaraj H, Ferro S, Sundaram M. An integrated (electro and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment[J]. J. Hazard. Mater., 2016,318(15):203-215.
doi: 10.1016/j.jhazmat.2016.07.028 URL |
[30] |
Huang C A, Yang S W, Lai P L. Effect of precursor baking on the electrochemical properties of IrO2-Ta2O5/Ti anodes[J]. Surf. Coat. Technol., 2018,350:896-903.
doi: 10.1016/j.surfcoat.2018.03.095 URL |
[31] | Nishanthi S T, Iyyapushpam S, Padiyan D P. Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties[C]// IEEE, International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), Chennai, INDIA, Jul 24-27, 2013: 320-323. |
[32] |
Alves S A, Patel S B, Sukotjo C, Mathew M T, Filho P N, Celis J P, Rocha L A, Shokuhfar T. Synjournal of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface[J]. Appl. Surf. Sci., 2017,399:682-701.
doi: 10.1016/j.apsusc.2016.12.105 URL |
[33] |
Wu D D, Wu X, Zhang Y L. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode[J]. Electrochim. Acta, 2020,338:135793.
doi: 10.1016/j.electacta.2020.135793 URL |
[34] | Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Research progress of iridium electroplating technology[J]. Met. Funct. Mater. (金属功能材料), 2012,2:58-61. |
[35] |
Steegstra P, Ahlberg E. Involvement of nanoparticles in the electrodeposition of hydrous iridium oxide films[J]. Electrochim. Acta, 2012,68:206-213.
doi: 10.1016/j.electacta.2012.02.058 URL |
[36] | Meyer R D, Nguyen T H, Twardoch U M, Rauh R D. Electrodeposition of iridium oxide charge injection electrodes[C]// Proceedings of the First Joint BMES/EMBS Conference, October 13-16, 1999, Atlanta, GA, USA. IEEE, c1999:0-1 |
[37] |
Yamanaka K. The electrochemical behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells[J]. Jpn. J. Appl. Phys., 1991,30(6):1285-1289.
doi: 10.1143/JJAP.30.1285 URL |
[38] |
Yousefpour M, Shokuhy A. Electrodeposition of TiO2-RuO2-IrO2 coating on titanium substrate[J]. Superlattices Microstruct., 2012,51(6):842-853.
doi: 10.1016/j.spmi.2012.03.024 URL pmid: 25276006 |
[39] | Wang W D(王维大), Feng Y L(冯雅丽), Li H R(李浩然), Cai Z L(蔡震雷). Electrodeposition of manganese dioxide on Ti-IrO2 anode in acidic nitrate medium[J]. J. Northeast. Univ. (东北大学学报), 2014,35(2):249-252. |
[40] |
Lattach Y, Rivera J F, Bamine T, Deronzier A, Moutet J C. Iridium oxide-polymer nanocomposite electrode materials for water oxidation[J]. ACS Appl. Mater. Interfaces, 2014,6(15):12852-12859.
doi: 10.1021/am5027852 URL pmid: 25045786 |
[41] |
Salimi A, Alizadeh V, Compton R G. Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film[J]. Anal. Sci., 2005,21(11):1275-1280.
doi: 10.2116/analsci.21.1275 URL pmid: 16317893 |
[42] | Guo W J(郭文君), Li Z Q(李紫琼), Ke R H(柯若昊), Niu D F(钮东方), Xu H(徐衡), Zhang X S(张新胜). A study of pluse electrodeposition on suppressing the formation of lithium dendrite[J]. J. Electrochem. (电化学), 2018,24(3):246-252. |
[43] |
Herrada R A, Acosta-Santoyo G, Sepúlveda-Guzmán S, Brillas E, Sires I, Bustos E. IrO2 Ta2O5 |Ti electrodes prepared by electrodeposition from different Ir:Ta ratios for the degradation of polycyclic aromatic hydrocarbons[J]. Electrochim. Acta, 2018,263:353-361.
doi: 10.1016/j.electacta.2018.01.056 URL |
[44] | Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), Cai W B(蔡文斌). Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. J. Electrochem. (电化学), 2017,23(2):238-244. |
[45] |
Van Pham C, Buhler M, Knoppel J, Bierling M, Seeberger D, Escalera-Lopez D, Mayrhofer K J J, Cherevko S, Thiele S. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Appl. Catal. B - Environ., 2020,269:118762.
doi: 10.1016/j.apcatb.2020.118762 URL |
[1] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[2] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[3] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[4] | 黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006-. |
[5] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[6] | 魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431-. |
[7] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[8] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[9] | 王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071-. |
[10] | 李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211-. |
[11] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
[12] | Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成. 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2021, 27(3): 278-290. |
[13] | 吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学(中英文), 2021, 27(2): 208-215. |
[14] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[15] | 周雪, 王虹, 尹振, 张玉军, 李建新. 间歇电沉积法制备纳米MnOx/Ti膜电极及其催化氧化环己烷性能[J]. 电化学(中英文), 2020, 26(3): 397-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||