电化学(中英文) ›› 2020, Vol. 26 ›› Issue (3): 422-430. doi: 10.13208/j.electrochem.190219
刘冰1,2*(), 赵耀帅1,2, 秦月1,2, 王怡1,2, 朱艳杰1,2, 王硕1,2*
收稿日期:
2019-02-19
修回日期:
2019-04-11
出版日期:
2020-06-28
发布日期:
2019-06-07
通讯作者:
刘冰,王硕
E-mail:ice6377@tust.edu.cn
基金资助:
LIU Bing1,2*(), ZHAO Yao-shuai1,2, QIN Yue1,2, WANG Yi1,2, ZHU Yan-jie1,2, WANG Shuo1,2*
Received:
2019-02-19
Revised:
2019-04-11
Published:
2020-06-28
Online:
2019-06-07
Contact:
LIU Bing,WANG Shuo
E-mail:ice6377@tust.edu.cn
摘要:
黄曲霉毒素B1(AFB1)以其高毒性和致癌性成为食品安全隐患而备受关注. 本文拟构建一种新颖、简单、快速、灵敏的传感器用于谷物食品中AFB1的痕量检测. 将介孔碳(CMK)修饰在工作电极表面来增大电极的表面积,再将工作电极恒电位沉积金纳米粒子(AuNPs),提高电信号的同时,为下一步巯基化适配体的连接提供位点. 检测过程中,AFB1可以竞争性地去除吸附在适配体链上的亚甲基蓝(MB)引起电信号的变化,对AFB1进行定量检测. 修饰的工作电极导电性能得到改善,灵敏度大大提高,对AFB1的线性响应范围为0.1 ~ 75 μg·L-1,检出限低至36 ng·L-1. 在对不同谷物食品(大米、玉米、糯米)进行加标回收实验中,回收率在92.3% ~ 103.6%范围之间,实现对目标物的定量检测. 本文为食品中AFB1快速检测方法提供了一种新思路和新方法.
中图分类号:
刘冰, 赵耀帅, 秦月, 王怡, 朱艳杰, 王硕. 一种简单灵敏的基于适配体的黄曲霉毒素B1电化学传感器[J]. 电化学(中英文), 2020, 26(3): 422-430.
LIU Bing, ZHAO Yao-shuai, QIN Yue, WANG Yi, ZHU Yan-jie, WANG Shuo. A Simple and Sensitive Aptamer-Based Electrochmical Sensor for Determination of Aflatoxin B1[J]. Journal of Electrochemistry, 2020, 26(3): 422-430.
表1
文中构建的传感器方法和其它文献中传感器方法比较
Sensor | Linear range | Detection limit | Reference |
---|---|---|---|
Aptamer/QDs conjugates sensor | 10 ~ 400 nmol·L-1 | 3.4 nmol·L-1 | [30] |
Aptamer/split DNAzyme sensor | 0.1 ~ 1×104 ng·mL-1 | 0.1 ng·mL-1 | [31] |
Molecularly imprinted polymer sensor | 14 ~ 500 ng·mL-1 | 14 ng·mL-1 | [32] |
Aptamer-based electrochmical sensor | 75 μg·L-1 ~ 100 ng·L-1 | 36 ng·L-1 | This work |
表2
传感器与高效液相色谱法对实际样品中AFB1的检测结果
Sample | Initial concentration/(μg·kg-1) | Proposed sensor | HPLC | ||
---|---|---|---|---|---|
Amount/ (μg·kg-1) | Recovery/% (means±SD, n=3) | Amount/ (μg·kg-1) | Recovery/% (means±SD, n=3) | ||
Rice | 10.0 | 10.36 | 103.6±2.4 | 10.15 | 101.7±0.8 |
25.0 | 23.76 | 95.1±3.0 | 23.38 | 93.3±1.6 | |
50.0 | 46.31 | 92.7±5.6 | 48.91 | 97.8±0.2 | |
Glutinous rice | 10.0 | 9.75 | 97.9±1.3 | 9.42 | 93.6±0.8 |
25.0 | 24.23 | 97.2±3.8 | 23.64 | 94.3±7.8 | |
50.0 | 48.04 | 96.2±4.3 | 45.08 | 90.0±0.6 | |
Corn | 10.0 | 9.52 | 95.2±2.8 | 10.56 | 106.3±1.3 |
25.0 | 23.73 | 95.0±3.8 | 21.35 | 84.8±0.4 | |
50.0 | 46.49 | 92.3±1.8 | 44.95 | 89.9±3.3 |
[1] |
Zhang Z, Nie D, Fan K, et al. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2019,60(9):1523-1537.
URL pmid: 30806521 |
[2] |
Li P W( 李培武), Ding X X( 丁小霞), Bai Y Z( 白艺珍), et al. Advance in research on risk assessment of aflatoxin in agricultural products[J]. Scientia Agricultura Sinical( 中国农业科学) , 2013,46(12):2534-2542.
doi: 10.3864/j.issn.0578-1752.2013.12.014 URL |
[3] | Salati S, D Imporzano G, Panseri S, et al. Degradation of Aflatoxin B1 during anaerobic digestion and its effect on process stability[J]. International Biodeterioration & Biodegradation, 2014,94:19-23. |
[4] |
Ma Y L, Kong Q B, Hua H, et al. Aflatoxin B1 up-regulates insulin receptor substrate 2 and stimulates hepatoma cell migration[J]. PLOS ONE, 2012,7(10):e47961.
doi: 10.1371/journal.pone.0047961 URL pmid: 23112878 |
[5] |
Moon J, Kim G, Lee S. A Gold Nanoparticle and Aflatoxin B1-BSA conjugates based lateral flow assay method for the analysis of Aflatoxin B1[J]. Materials, 2012,5(12):634-643.
doi: 10.3390/ma5040634 URL |
[6] |
Kotinagu K, Mohanamba T, Kumari L R. Assessment of Aflatoxin B1 in livestock feed and feed ingredients by high-performance thin layer chromatography[J]. Veterinary World, 2015,8(12):1396-1399.
doi: 10.14202/vetworld.2015.1396-1399 URL pmid: 27047050 |
[7] | Amirkhizi B, Arefhosseini S R, Ansarin M, et al. Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC[J]. Food Additives & Contaminants: Part B, 2015,8(4):245-249. |
[8] |
Zhou G H, Chen Y J, Kong Q, et al. Detoxification of Aflatoxin B1 by zygosaccharomyces rouxii with solid state fermentation in peanut meal[J]. Toxins, 2017,9(1):42.
doi: 10.3390/toxins9010042 URL |
[9] | Luo D Q( 罗定强), Huang Y( 黄艳), Fan B J( 樊宝娟), et al. Determination of aflatoxin B1, B2, G1, G2 in nelumbinissemen by LC-MS/MSLC-MS/MS[J]. Anhui Medical and Pharmaceutical Journall( 安徽医药), 2014,18(1):41-44. |
[10] | Zhang M H( 张铭函), Jiang J Q( 姜俊巧), Ge J J( 葛君杰), et al. Acetylcholinesterase biosensor platform based on BP2000 for the detection of carbaryl[J]. Journal of Ele-ctrochemistryl( 电化学), 2018,24(4):4-9. |
[11] | Li W J( 李文进), Liu X( 刘霞), Li R Z( 李蓉卓), et al. Progress on pesticide residues detection by electrochemical sensor[J]. Food & Machineryl( 食品与机械), 2013,29(4):241-245. |
[12] |
Rawal R, Chawla S, Devender, et al. An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract[J]. Enzyme and Microbial Technology, 2012,51(4):179-185.
doi: 10.1016/j.enzmictec.2012.06.001 URL pmid: 22883551 |
[13] |
Talemi R P, Mousavi S M, Afruzi H. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective dopamine aptasensor[J]. Materials Science & Engineering C - Materials for Biological Applications, 2017,73:700-708.
doi: 10.1016/j.msec.2016.12.119 URL pmid: 28183663 |
[14] |
Xue X Y, Cheng R, Shi L, et al. Nanomaterials for water pollution monitoring and remediation[J]. Environmental Chemistry Letters, 2017,15(1):23-27.
doi: 10.1007/s10311-016-0595-x URL |
[15] |
Liu W, Luo J, Zhao M, et al. Effect of amino compounds on luminol-H2O2-gold nanoparticle chemiluminescence system[J]. Analytical and Bioanalytical Chemistry, 2016,408(30):8821-8830.
URL pmid: 27473431 |
[16] | Cheng C E, Lin C Y, Chang H Y, et al. Surface-enhanced Raman scattering of graphene with photo-assisted-synthesized gold nanoparticles[J]. Optics Express, 2013,21(5):6547-6554. |
[17] |
Lang J W, Yan X B, Yuan X Y, et al. Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors[J]. Journal of Power Sources, 2011,196(23):10472-10478.
doi: 10.1016/j.jpowsour.2011.08.017 URL |
[18] |
Liu F L, Guo Z B, Ling H G, et al. Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons[J]. Microporous and Mesoporous Materials, 2016,227:104-111.
doi: 10.1016/j.micromeso.2016.02.051 URL |
[19] |
Cho M S, Kim Y W, Han S Y, et al. Detection for folding of the thrombin binding aptamer using label-free electrochemical methods[J]. BMB Reports, 2008,41(2):126-131.
URL pmid: 18315948 |
[20] |
Nimjee S M, Rusconi C P, Sullenger B A. APTAMERS: an emerging class of therapeutics[J]. Annual Review of Medicine, 2005,56(1):555-583.
doi: 10.1146/annurev.med.56.062904.144915 URL |
[21] |
Wang J, Wang F, Dong S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch[J]. Journal of Electroanalytical Chemistry, 2009,626(1/2):1-5.
doi: 10.1016/j.jelechem.2008.08.008 URL |
[22] |
Bang G S, Cho S, Kim B G. A novel electrochemical detection method for aptamer biosensors[J]. Biosensors & Bioelectronics, 2005,21(6):863-870.
doi: 10.1016/j.bios.2005.02.002 URL pmid: 16257654 |
[23] |
Wang J, Wang F, Dong S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch[J]. Journal of Electroanalytical Chemistry, 2009,626(1/2):1-5.
doi: 10.1016/j.jelechem.2008.08.008 URL |
[24] |
Erdem A, Kerman K, Meric B, et al. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus[J]. Analytica Chimica Acta, 2000,422(2):139-149.
doi: 10.1016/S0003-2670(00)01058-8 URL |
[25] |
Bagheri H, Talemi R P, Afkhami A. Gold nanoparticles deposited on fluorine-doped tin oxide surface as an effective platform for fabricating a highly sensitive and specific digoxin aptasensor[J]. RSC Advances, 2015,5(72):58491-58498.
doi: 10.1039/C5RA09402J URL |
[26] |
Mashhadizadeh M H, Talemi R P. Application of diazo-thiourea and gold nano-particles in the design of a highly sensitive and selective DNA biosensor[J]. Chinese Chemical Letters, 2015,26(1):160-166.
doi: 10.1016/j.cclet.2014.09.004 URL |
[27] | Yu X Y( 于雪云). The application of cyclic voltammetry experimental technique is briefly described[J]. Journal of Dezhou Universityl( 德州学院学报), 2012,28(S1):204-205. |
[28] | Qi Q D( 乔庆东), Li Q( 李琪). Electrochemical behaviors of ferrocene using cyclic voltammetry[J]. Journal of Liaoning Shihua Universityl( 辽宁石油化工大学学报), 2013,34(3):5-7. |
[29] |
Park J S, Kim H J, Lee J H, et al. Amyloid beta detection by faradaic electrochemical impedance spectroscopy using interdigitated microelectrodes[J]. Sensors, 2018,18(2):426.
doi: 10.3390/s18020426 URL |
[30] |
Sabet F S, Khabbaz H, Hosseini M, et al. FRET-based aptamer biosensor for selective and sensitive detection of Aflatoxin B1 in peanut and rice[J]. Food Chemistry, 2016,220:527-532.
doi: 10.1016/j.foodchem.2016.10.004 URL pmid: 27855935 |
[31] |
Seok Y, Byun J Y, Shim W B, et al. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme[J]. Analytica Chimica Acta, 2015,886:182-187.
URL pmid: 26320651 |
[32] |
Sergeyeva T, Yarynka D, Piletska E, et al. Fluorescent sensor systems based on nanostructuerd polymeric membranes for selective recognition of Aflatoxin B1[J]. Talanta, 2017,175:101-107.
doi: 10.1016/j.talanta.2017.07.030 URL pmid: 28841965 |
[1] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[2] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[3] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[4] | 刘原东, 李佳润, 张立敏, 田阳. 基于线性范围可调的适配体功能化微电极的鼠脑中钾离子的活体分析[J]. 电化学(中英文), 2023, 29(6): 2218004-. |
[5] | 罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191-. |
[6] | 李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211-. |
[7] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[8] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[9] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[10] | 农永玲, 乔妮娜, 梁 营. 基于AuNPs/PANI/TNTs纳米复合材料的电化学检测妥布霉素的适配体传感器[J]. 电化学(中英文), 2019, 25(6): 720-730. |
[11] | 袁 洋, 王佳新, 曹玉华. 磁性印迹纳米粒子固定血红蛋白修饰磁性电极构建过氧化氢传感器[J]. 电化学(中英文), 2019, 25(6): 757-763. |
[12] | 宋忠乾, 韩方杰, 孔惠君, 许佳楠, 包 宇, 韩冬雪, 牛 利. 柔性可穿戴传感器件与储能器件的发展现状与挑战[J]. 电化学(中英文), 2019, 25(3): 326-339. |
[13] | 潘昱韡, 毛 康, Tuerk Franziska, 杨竹根. 电化学生物传感器在污水分析及污水流行病学中的应用进展[J]. 电化学(中英文), 2019, 25(3): 363-373. |
[14] | 周福玲, 熊小莉, 孙旭平. 基于CoP纳米阵列的亚硝酸根传感器的研究[J]. 电化学(中英文), 2019, 25(2): 252-259. |
[15] | 付亚敏, 闫小霞, 张小华, 陈金华. 基于催化发卡自组装和 Ru(NH3)63+ 的核酸光电化学灵敏分析[J]. 电化学(中英文), 2019, 25(2): 232-243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||