电化学(中英文) ›› 2018, Vol. 24 ›› Issue (6): 655-663. doi: 10.13208/j.electrochem.180859
何大平,木士春*
收稿日期:
2018-10-10
修回日期:
2018-11-20
出版日期:
2018-12-28
发布日期:
2018-11-22
通讯作者:
木士春
E-mail:msc@whut.edu.cn
基金资助:
HE Da-ping,MU Shi-chun*
Received:
2018-10-10
Revised:
2018-11-20
Published:
2018-12-28
Online:
2018-11-22
Contact:
MU Shi-chun
E-mail:msc@whut.edu.cn
摘要: 质子交换膜燃料电池使用寿命低是制约其商业化应用的主要瓶颈. 其中,影响质子交换膜燃料电池寿命的一个主要因素是其所广泛使用的贵金属铂基电催化剂在燃料电池苛刻的运行环境下(如可变电压、强酸性、气液两相流等)容易发生降解,导致电催化剂性能衰减,从而降低了质子交换膜燃料电池的使用寿命. 因此,如何保持铂基电催化剂的电化学稳定性已成为质子交换膜燃料电池稳定性研究中的重大科学问题. 本论文基于作者在该领域的长期研究成果,评述了应用于质子交换膜燃料电池的铂电催化剂稳定性的研究进展. 重点关注了能够大幅改善铂催化剂电化学稳定性的策略,包括聚合物稳定策略、多孔碳封装/限域稳定策略以及载体稳定策略,并对这些铂催化剂稳定策略所面临的挑战进行了展望.
中图分类号:
何大平,木士春. 质子交换膜燃料电池铂电催化剂稳定策略[J]. 电化学(中英文), 2018, 24(6): 655-663.
HE Da-ping,MU Shi-chun. Stabilization Strategies of Pt Catalysts forProton Exchange Membrane Fuel Cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663.
[1] Yi B L(衣宝廉). Fuel cells-principles, technologies and applications[M]. Beijing: Chemical Industry Press(化学工业出版社), 2003. [2] Wang H M(汪虹敏), Wei Z D(魏子栋). Development on stability of catalysts for proton exchange membrane fuel cell[J]. Chemistry Bulletin(化学通报), 2014, 77(1): 3-10. [3] Qi L(戚利), Yin Y(殷瑛), Tu W G(涂文广), et al. Preparation of Pt-TiO2/graphene composites with high catalytic activity towards methanol oxidation and oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 377-381. [4] Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. [5] He D P, Rong Y Y, Kou Z K, et al. Intrinsically microporous polymer slows down fuel cell catalyst corrosion[J]. Electrochemistry Communication, 2015, 59: 72-76. [6] He D P, Rong Y Y, Carta M, et al. Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM)[J]. RSC Advances, 2016, 6(11): 9315-9319. [7] Nam K W, Song J, Oh K H, et al. Perfluorosulfonic acid-functionalized Pt/graphene as a high-performance oxygen reduction reaction catalyst for proton exchange membrane fuel cells[J]. Journal of Solid State Electrochemistry, 2013, 17(3): 767-774. [8] Sarma L S, Lin T D, Tsai Y W, et al. Carbon supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells[J]. Journal of Power Sources, 2005, 139(1/2): 44-54. [9] Scibioh M A, Oh I H, Lim H T, et al. Investigation of various ionomer-coated carbon supports for direct methanol fuel cell applications[J]. Applied Catalysis B Environmental, 2008, 77(3/4): 373-385. [10] Cheng K, Liu X B, Li W Q, et al, Enhancing the specific activity of metal catalysts toward oxygen reduction by introducing proton conductor[J]. Nano, 2016, 11(5): 1650055. [11] Cheng K, Jiang M, Ye B, et al. Three-dimensionally costabilized metal catalysts toward an oxygen reduction reaction[J]. Langmuir, 2016, 32(9): 2236-2244. [12] Tian Z Q, Jiang S P, Liu Z C, et al. Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1613-1618. [13] Cheng N C, Mu S C, Pan M, et al. Improved lifetime of PEM fuel cell catalysts through polymer stabilization[J]. Electrochemistry Communications, 2009, 11(8): 1610-1614. [14] Yin S B, Mu S C, Lv H F, et al. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization[J]. Applied Catalysis B Environmental, 2010, 93(3-4): 233-240. [15] He D P, Mu S C, Pan M. Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells[J]. Carbon, 2011, 49(1): 82-88. [16] He D P, Cheng K, Li H G, et al. Highly active platinum nanoparticles on graphene nanosheets with a significant improvement in stability and CO tolerance[J]. Langmuir, 2012, 28(8): 3979-3986. [17] Curnick O J, Pollet B G, Mendes P M. NafionR-stabilised Pt/C electrocatalysts with efficient catalyst layer ionomer distribution for proton exchange membrane fuel cells[J]. Rsc Advances, 2012, 2(22): 8368-8374. [18] Curnick O J, Mendes P M, Pollet B G. Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles[J]. Electrochemistry Communications, 2010, 12(8): 1017-1020. [19] Curnick O J, Mendes P, Pollet B. Morphological origins of the enhanced durability of a Pt/C electrocatalyst derived from NafionR-stabilized colloidal Pt nanoparticles [J]. ECS Transactions, 2010, 33(1): 557-561. [20] Zhu S, Wang S, Jiang L, et al. High Pt utilization catalyst prepared by ion exchange method for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14543-14548. [21] Oh H S, Kim K, Kim H. Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11564-11571. [22] Chen S G, Wei Z D, Qi X Q, et al. Nanostructured poly-aniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255. [23] Kaewsai D, Hunsom M. Comparative study of the ORR activity and stability of Pt and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotubes in a PEM fuel cell[J]. Nanomaterials, 2018, 8(5): 299. [24] He D P, Zen C, Xu C, et al. Polyaniline functionalized carbon nanotube supported platinum catalysts[J]. Langmuir, 2011, 27(9): 5582-5588. [25] Shi L, Liang R P, Qiu J D. Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes[J]. Journal of Materials Chemistry, 2012, 22(33): 17196-17203. [26] Ye B, Cheng K, Li W Q, et al. Polyaniline and perfluorosulfonic acid co-stabilized metal catalysts for oxygen reduction reaction[J]. Langmuir, 2017, 33(22): 5353-5361. [27] Nie Y, Chen S, Ding W, et al. Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction[J]. Chemical Communications, 2014, 50 (97): 15431-15434. [28] Cheng N C, Banis M N, Liu J, et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction[J]. Advanced Materials, 2015, 27(2): 277-281. [29] Rong Y Y, He D P, Malpass-Evans R, et al. High-utilisation nanoplatinum catalyst (Pt@cPIM) obtained via vacuum carbonisation in a molecularly rigid polymer of intrinsic microporosity[J]. Electrocatalysis, 2017, 8(2): 132-143. [30] Cheng K, Kou Z K, Zhang J, et al. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction[J].Journal of Materials Chemistry A, 2015, 3(26): 14007- 14014. [31] Kou Z K, Cheng K, Wu H, et al. Observable electrochemical oxidation of carbon promoted by platinum nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3940-3947. [32] Cheng K, Zhu K, Liu S, et al. A spatially confined gC3N4-Pt electrocatalyst with robust stability[J]. ACS Applied Materials & Interfaces, 2018, 10(25), 21306-21312. [33] Xu F, Cheng K, Yu Y, et al. One-pot synthesis of Pt/CeO2/C catalyst for enhancing the SO2 electro-oxidation[J]. Electrochimica Acta, 2017, 229(C): 253-260. [34] Mu S C, Zhao P, Xu C, et al. Detaching behaviors of catalyst layers applied in PEM fuel cells by off-line accelerated test[J]. International Journal of Hydrogen Energy, 2010, 35(15): 8155-8160. [35] Mu S C, Chen X, Sun R H, et al. Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells[J]. Carbon, 2016, 130: 449-456. [36] Lv H F, Mu S C, Cheng N C, et al. Nano silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon[J]. Applied Catalysis B: Environmental, 2010, 100(1): 190-196. [37] Lv H F, Wu P, Wan W, et al. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7027-7031. [38] Cheng N C, Banis M N, Liu J, et al. Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts[J]. Energy & Environmental Science, 2015, 8(5): 1450-1455. [39] Xu F, Xu R, Mu S C. Enhanced CO and SO2-poisoning resistance for CeO2 modified Pt/C catalysts applied in PEM fuel cells[J]. Electrochimica Acta, 2013, 112(12): 304-309. [40] Li H G, Cheng N C, Zheng Y, et al. Oxidation stability of nanographite materials[J]. Advanced Energy Materials, 2013, 3(9): 1176-1179. [41] Xu R, Xu F, Pan M, et al. Improving sulfur tolerance of noble metal catalysts by tungsten oxide-induced effects[J]. RSC Advances, 2013, 3(3): 764-773. [42] Cheng N C, Mu S C, Chen X J, et al. Enhanced lifetime of PEM Fuel cell catalysts using nafion functionalized carbon support[J]. Electrochimica Acta, 2011, 56(5): 2154- 2159. [43] Lv H F, Peng T, Wu P, et al. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance[J]. Journal of Materials Chemistry, 2012, 22(18): 9155-9160. [44] Cheng N C, Li H G, Li G Q, et al. Highly active Pt@Au nanoparticles encapsulated with perfluorosulfonic acid for the reduction of oxygen[J]. Chemical Communications, 2011, 47(48): 12792-12794. [45] Yin S B, Mu S C, Pan M, et al. A highly stable TiB2 supported Pt electrocatalysts applied in PEM fuel cells[J]. Journal of Power Sources, 2011, 196(19): 7931-7936. [46] Xu F, Wang D Q, Sa B S, et al. One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC[J]. International Journal of Hydrogen Energy, 2017, 42(18): 13011-13019. [47] He D P, Mu S C, Pan M. Improved carbon nanotube supported Pt nanocatalyts with lyophilization method[J]. International Journal of Hydrogen Energy, 2012, 37: 4699- 4703. [48] Lv H F, Cheng N C, Mu S C, et al. Heat-treated multi-walled carbon nanotubes as durable supports for PEM fuel cell catalysts[J]. Electrochimica Acta, 2011, 58(5): 736-742. [49] Li H G, Zhang X, He D P, et al. Carbon-embedded carbon nanotubes as supports of polymer electrolyte membrane fuel cell catalysts[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(6): 6929-6933. [50] Yin S B, Luo L, Qiang Y H, et al. Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method[J]. Journal of Power Sources, 2012, 198(1): 1-6. [51] Cheng K, He D P, Peng T, et al. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2014, 132(3): 356-363. [52] He D P, Jiang Y L, Pan M, et al. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J]. Applied Catalysis B: Environmental, 2013, 132: 379-388. [53] He D P, Cheng K, Peng T, et al. Graphene/carbon nano-spheres sandwich supported PEM fuel cell metal nano-catalysts with remarkable high activity and stability[J]. Journal of Materials Chemistry A, 2013, 1(6): 2126-2132. [54] He D P, Cheng K, Peng T, et al. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability[J]. Journal of Materials Chemistry, 2012, 22(39): 21298-21304. [55] He D P, Tang H L, Kou Z K, et al. Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells[J]. Advanced Materials, 2017, 29(20): 1601741. [56] He D P, Cheng K, Xiong Y L, et al. Simultaneously sulfonated and reduced graphene oxide as highly efficient supports for metal nanocatalysts[J]. Carbon, 2014, 66(2): 312-319. [57] Wu H, Peng T, Kou Z K, et al. Core-shell graphene@ amorphous carbon composites supported platinum catalysts towards oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2015, 36(4): 490-495. [58] Wu H, Peng T, Kou Z K, et al. Constructing ultrastable ceramic@graphene core-shell architectures by an in situ synthesis strategy as advanced metal catalyst supports towards oxygen reduction[J]. Journal of Energy Chemistry, 2017, 26(6): 1160-1167. [59] Chen X, He D P, Wu H, et al. Platinized graphene/ceramics nano-sandwiched architectures and electrodes with outstanding performance for PEM fuel cells[J]. Scientific Reports, 2015, 5: 16246. [60] Lv H F, Mu S C. Nano-ceramic support materials for low temperature fuel cell catalysts[J]. Nanoscale, 2014, 6(10): 5063-5074. [61] Wu P, Lv H F, Peng T, et al. Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction[J]. Scientific Reports, 2014, 4(2): 3968. [62] Lv H F, Cheng N C, Peng T. High stability platinum electrocatalysts with zirconia-carbon hybrid supports[J]. Journal of Materials Chemistry, 2012, 22(3): 1135-1141. [63] Shao Y, Sui J, Yin G, et al. Nitrogen-doped carbon nano-structures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Applied Catalysis B: Environmental, 2008, 79(1): 89-99. [64] Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758. [65] Zhou C, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes[J]. Science, 2000, 290(5496): 1552-1555.
|
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[3] | 王振宇, 高学平. 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学(中英文), 2023, 29(4): 2217001-. |
[4] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[5] | 贠潇如, 陈宇方, 肖培涛, 郑春满. 关于水系锌离子电池中无氧钒基正极材料的综述[J]. 电化学(中英文), 2022, 28(11): 2219004-. |
[6] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[7] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[8] | 魏荣强, 李世安, 刘艺辉, 杨治, 沈秋婉, 杨国刚. 流道与肋宽比对气体扩散层性能影响的数值研究[J]. 电化学(中英文), 2021, 27(5): 579-585. |
[9] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
[10] | 吴凯. Na3V2(PO4)2O2F的合成及其在钠离子电池中的应用[J]. 电化学(中英文), 2021, 27(1): 56-62. |
[11] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
[12] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[13] | 蒋鹏杰, 吕 燚, 陈昌淼, 何宏程, 蔡 勇, 张 明. Pt-WO3纳米片的合成及其电催化析氢性能研究[J]. 电化学(中英文), 2019, 25(5): 562-570. |
[14] | 孙梦雷, 张达奇, 冯金奎, 倪江锋. 钒基电极材料研究进展[J]. 电化学(中英文), 2019, 25(1): 45-54. |
[15] | 刘勇,丁涵,司德春,彭杰,张剑波. 静电纺丝制备质子交换膜燃料电池催化剂层综述[J]. 电化学(中英文), 2018, 24(6): 639-654. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||