电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 563-572. doi: 10.13208/j.electrochem.200314
张焰峰1,2,3,4, 肖菲2, 陈广宇2,5, 邵敏华2,5,6,*()
收稿日期:
2020-03-14
修回日期:
2020-05-08
出版日期:
2020-08-28
发布日期:
2020-05-20
通讯作者:
邵敏华
E-mail:kemshao@ust.hk
基金资助:
ZHANG Yan-feng1,2,3,4, XIAO Fei2, CHEN Guang-yu2,5, SHAO Min-hua2,5,6,*()
Received:
2020-03-14
Revised:
2020-05-08
Published:
2020-08-28
Online:
2020-05-20
Contact:
SHAO Min-hua
E-mail:kemshao@ust.hk
摘要:
质子交换膜燃料电池的成本和寿命问题是制约其商业化的主要瓶颈. 开发高效稳定的新型非铂氧还原催化剂是降低电池成本的重要途径. 过渡金属-氮-碳型非贵金属催化剂具有较高催化活性、资源丰富、价格低廉等优点, 被认为是未来最有希望替代铂的氧还原催化剂. 本综述从催化剂的设计构筑、催化层结构优化以及电池测试等方面, 对过渡金属-氮-碳型非贵金属催化剂的国内外最新研究进展进行了重点讨论, 并对未来其发展趋势提出展望.
中图分类号:
张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572.
ZHANG Yan-feng, XIAO Fei, CHEN Guang-yu, SHAO Min-hua. Fuel Cell Performance of Non-Precious Metal Based Electrocatalysts[J]. Journal of Electrochemistry, 2020, 26(4): 563-572.
表1
非贵金属催化剂质子膜燃料电池催化剂膜电极制备参数,测试条件及测试结果.
Type | Ref. | Catalyst loading/ (mg·cm-2) | I/C weight ratio | Panode & Pcathode/ bar | H2/O2/Air/ (mL·min-1) | H2-O2 power density/(W·cm-2) | H2-air power density/ (W·cm-2) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | Power density (at 0.6 V) | Maximum | |||||||||
Power density | Voltage/ V | Power density | Voltage/V | ||||||||
Fe-N-C | [24] | 3.5 | 0.85 | 1.0 | 200/200 | 0.32 | 0.6 | ||||
[25] | 2.2 | 1.5 | 400/400 | 0.62 | 0.46 | 0.42 | |||||
[22] | 4.0 | 0.7 | 1.0 | 0.60 | 0.55 | 0.56 | |||||
[26] | 3.5 | 1.0 | 200/200 | 0.67 | 0.52 | ||||||
[27] | 4.1 | 1 | 1.5 | 300/300 | 0.73 | 0.4 | 0.55 | ||||
[23] | 2.2 | 1 | 1.5 | 300/400 | 0.62 | 0.43 | 0.41 | ||||
[28] | 3.0 | 1.5 | 2.0 | 300/400 | 0.9 | 0.45 | 0.72 | ||||
[29] | 2.0 | 1 | 1.5 | 200/240 | 1.01 | 0.55 | 0.80 | ||||
[30] | 3.5 | 0.6 | 1.5 | 200/200 | 1.1 | 0.4 | 0.71 | ||||
[31] | 4.0 | 1.0 | 60/60/200 | 0.43 | 0.45 | 0.18 | 0.32 | 0.48 | |||
[20] | 3.0 | 1 | 1.0 | 250/300 | 0.63 | 0.41 | 0.5 | ||||
[32] | 4.0 | 0.46 | 200/350 | 0.66 | 0.44 | 0.4 | |||||
[33] | 3.0 | 0.45 | 2.0 | 250/200/200 | 0.49 | 0.4 | 0.4 | 0.32 | 0.5 | ||
[19] | 3.0 | 1.0 | 300/300 | 0.32 | 0.48 | ||||||
[10] | 2.0 | 1.3 | 1.0 | 300/400/500 | 1.18 | 0.47 | 1.03 | 0.43 | 0.53 | ||
[34] | 0.77 | 1.5 | 1.5/2.5 | 0.85 | 0.4 | 0.6 | |||||
[35] | 4 | 0.55 | 1.5 | 200/200/200 | 0.94 | 0.4 | 0.68 | 0.42 | 0.5 | ||
[36] | 3 | 0.66 | 1.0 | 150/150 | 0.45 | 0.3 | 0.23 | ||||
[37] | 3 | 0.3 | 1.0 | 400/1200 | 0.55 | 0.4 | 0.36 | ||||
[38] | 4 | 0.55 | 2.0 | 400/400 | 0.7 | 0.35 | 0.33 | ||||
[39] | 3.5 | 0.54 | 2.0 | 200/200/200 | 0.7 | 0.41 | 0.52 | 0.32 | 0.52 | ||
[40] | 4 | 0.83 | 1.0 | 200/200/300 | 0.68 | 0.38 | 0.47 | 0.40 | 0.52 | ||
[41] | 4 | 0.2 | 1.4 | 300/400/400 | 0.86 | 0.39 | 0.62 | 0.43 | 0.42 | ||
[42] | 4 | 2 | 0 | 300/300 | 0.35 | 0.42 | 0.27 | ||||
[43] | 4 | 0.46 | 1.0 | 200/200/200 | 0.63 | 0.4 | 0.48 | 0.36 | 0.5 | ||
[44] | 4 | 1.25 | 2.0 | 300/300/300 | 0.8 | 0.48 | 0.7 | 0.38 | 0.5 | ||
[45] | 4 | 1.5 | 1.5 | 300/300/300 | 0.75 | 0.4 | 0.63 | 0.30 | 0.51 | ||
Co-N-C | [46] | 1.6 | 0.86 | 1.5 | 200/200 | 0.37 | 0.41 | 0.2 | |||
[47] | 3.0 | 1 | 2.0 | 300/400/400 | 0.79 | 0.45 | 0.65 | 0.30 | 0.52 | ||
[11] | 4.0 | 0.54 | 2.0 | 200/200/200 | 0.56 | 0.38 | 0.29 | 0.28 | 0.45 | ||
[48] | 4.0 | 0.6 | 1.0 | 200/200 | 0.87 | 0.45 | 0.60 | ||||
Mn-N-C | [49] | 4.0 | 0.35 | 1.5 | 200/200/200 | 0.46 | 0.3 | 0.25 | 0.15 | 0.48 |
[1] | Cano Z P, Banham D, Ye S Y, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018,3(4):279-289. |
[2] | Adzic R R, Zhang J, Sasaki K, et al. Platinum monolayer fuel cell electrocatalysts[J]. Topics in Catalysis, 2007,46(3/4):249-262. |
[3] |
Shao M H, Shoemaker K, Peles A, et al. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2010,132(27):9253-9255.
doi: 10.1021/ja101966a URL pmid: 20565078 |
[4] |
Shao M H, Chang Q W, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016,116(6):3594-3657.
URL pmid: 26886420 |
[5] | Ioroi T, Siroma Z, Yamazaki S I, et al. Electrocatalysts for PEM fuel cells[J]. Advanced Energy Materals, 2018,9(23):1801284. |
[6] | Zhao Z P, Chen C L, Liu Z Y, et al. Pt-based nanocrystal for electrocatalytic oxygen reduction[J]. Advanced Materials, 2019,31(31):1808115. |
[7] | Akita T, Taniguchi A, Maekawa J, et al. Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly[J]. Journal of Power Sources, 2006,159(1):461-467. |
[8] | Xiao F, Xu G L, Sun C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction[J]. Nano Energy, 2019,61:60-68. |
[9] | Li J C, Xiao F, Zhong H, et al. Secondary-atom-assisted synjournal of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction[J]. ACS Catalysis, 2019,9(7):5929-5934. |
[10] | Wan X, Liu X F, Li Y C, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019,2(3):259-268. |
[11] | Wang X X, Cullen D A, Pan Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Mat-erials, 2018,30(11):1706758. |
[12] | Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019,2(7):578-589. |
[13] | Martinez U, Komini Babu S, Holby E F, et al. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials, 2019,31(31):1806545. |
[14] | Zhang H B, Liu G G, Shi L, et al. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis[J]. Advanced Energy Materials, 2018,8(1):1701343. |
[15] | Zhang H G, Osgood H, Xie X H, et al. Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks[J]. Nano Energy, 2017,31:331-350. |
[16] | Banham D, Ye S Y, Pei K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015,285:334-348. |
[17] | ZhangY L (张雅琳), Chen C (陈驰), Zhou L L (邹亮亮), et al. Fe-N doped hollow carbon nanospheres linked by carbon nanotubes for oxygen reduction reaction[J]. Journal of Electrochemistry (电化学), 2018,24(6):726-732. |
[18] | Liu J (刘京), Ran G J (冉光钧), Ruan M B (阮明波), et al. Recent research progress for non-Pt-based oxygen reduction reaction electrocatalysts in fuel cell[J]. Journal of Ele-ctrochemistry (电化学), 2015,21(2):130-137. |
[19] | Yang X H, Wang Y C, Zhang G X, et al. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells[J]. Applied Catalysis B: Environmental, 2020,264:118523. |
[20] | Zhan Y F, Zeng H B, Xie F Y, et al. Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2019,431:31-39. |
[21] | Qiu J S (邱介山), Wang Z Y (王治宇), Xiu L Y (修陆洋), et al. Caging porous Co-N-C nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. Journal of Electrochemistry (电化学), 2018,24(6):715-725. |
[22] | Barkholtz H M, Chong L, Kaiser Z B, et al. Highly active non-PGM catalysts prepared from metal organic frameworks[J]. Catalysts, 2015,5(2):955-965. |
[23] |
Zhao D, Shui J L, Grabstanowicz L R, et al. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks[J]. Advanced Materials, 2014,26(7):1093-1097.
doi: 10.1002/adma.201304238 URL pmid: 24357431 |
[24] | Barkholtz H M, Chong L, Kaiser Z B, et al. Enhanced performance of non-PGM catalysts in air operated PEM-fuel cells[J]. International Journal of Hydrogen Energy, 2016,41(47):22598-22604. |
[25] | Zhao D, Shui J L, Grabstanowicz L R, et al. A versatile preparation of highly active ZIF-based non-PGM catalysts through solid state synjournal[J]. ECS Transactions, 2014,64(3):253-260. |
[26] | Barkholtz H, Chong L, Kaiser Z B, et al. Non-precious metal catalysts prepared by zeolitic imidazolate frameworks: The ligand influence to morphology and performance[J]. Fuel Cells, 2016,16(4):428-433. |
[27] | Yuan S, Shui J L, Grabstanowicz L, et al. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin[J]. Angew-andte Chemie International Edition, 2013,52(32):8349-8353. |
[28] | Shui J L, Chen C, Grabstanowicz L, et al. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network[J]. Proceedings of the National Academy of Sciences, 2015,112(34):10629-10634. |
[29] | Li Y C, Liu X F, Zheng L R, et al. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2019,7(45):26147-26153. |
[30] |
Chen J R, Yan X H, Fu C H, et al. Insight into the rapid degradation behavior of nonprecious metal Fe-N-C electrocatalyst-based proton exchange membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2019,11(41):37779-37786.
doi: 10.1021/acsami.9b13474 URL pmid: 31539220 |
[31] | Li J, Bruller S, Sabarirajan D C, et al. Designing the 3D architecture of PGM-free cathodes for H2/air proton exchange membrane fuel cells[J]. ACS Applied Energy Ma-terials, 2019,2(10):7211-7222. |
[32] |
Li W, Ding W, Nie Y, et al. Transformation of metal-organic frameworks into huge-diameter carbon nanotubes with high performance in proton exchange membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2019,11(25):22290-22296.
URL pmid: 31150203 |
[33] | Workman M J, Serov A, Tsui L K, et al. Fe-N-C catalyst graphitic layer structure and fuel cell performance[J]. ACS Energy Letters, 2017,2(7):1489-1493. |
[34] | Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017,139(48):17281-17284. |
[35] |
Chung H T, Cullen D A, Higgins D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst[J]. Science, 2017,357(6350):479-484.
doi: 10.1126/science.aan2255 URL pmid: 28774924 |
[36] | Wang W, Chen W H, Miao P Y, et al. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-NC catalyst[J]. ACS Catalysis, 2017,7(9):6144-6149. |
[37] |
Sa Y J, Seo D J, Woo J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2016,138(45):15046-15056.
URL pmid: 27750429 |
[38] | Zhang N, Zhou T P, Chen M L, et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst[J]. Energy & Environmental Science, 2020,13(1):111-118. |
[39] |
Li J Z, Zhang H G, Samarakoon W, et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction[J]. Angewandte Chemie International Edition, 2019,58(52):18971-18980.
doi: 10.1002/anie.201909312 URL pmid: 31633848 |
[40] |
Qiao M F, Wang Y, Wang Q, et al. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultra-efficient oxygen reduction reaction in PEMFC[J]. Angewandte Chemie International Edition, 2019,59(7):2688-2694.
doi: 10.1002/anie.201914123 URL pmid: 31769154 |
[41] | Fu X G, Li N, Ren B H, et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell[J]. Advan-ced Energy Materials, 2019,9(11):1803737. |
[42] |
Wang Q, Zhou Z Y, Lai Y J, et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing[J]. Journal of the American chemical Society, 2014,136(31):10882-10885.
doi: 10.1021/ja505777v URL |
[43] | Zhang H, Chung H T, Cullen D A, et al. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy & Environmental Science, 2019,12(8):2548-2558. |
[44] | Zhang G X, Yang X H, Dubois M, et al. Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar++NH3 catalyst[J]. Energy & Environmental Science, 2019,12(10):3015-3037. |
[45] | Tian J, Morozan A, Sougrati M T, et al. Optimized synjournal of Fe/N/C cathode catalysts for PEM fuel cells: a matter of iron-ligand coordination strength[J]. Angewand-te Chemie International Edition, 2013,52(27):6867-6870. |
[46] | Chong L, Goenaga G A, Williams K, et al. Investigation of oxygen reduction activity of catalysts derived from Co and Co/Zn methyl-imidazolate frameworks in proton exchange membrane fuel cells[J]. ChemElectroChem, 2016,3(10):1541-1545. |
[47] | Chen L Y, Liu X F, Zheng L R, et al. Insights into the role of active site density in the fuel cell performance of Co-NC catalysts[J]. Applied Catalysis B: Environmental, 2019,256:UNSP117849. |
[48] | He Y, Hwang S, Cullen D A, et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy[J]. Energy & Environmental Science, 2019,12(1):250-260. |
[49] | Li J, Chen M, Cullen D A, et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nature Catalysis, 2018,1(12):935-945. |
[50] |
Banham D, Kishimoto T, Zhou Y G, et al. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications[J]. Science Advances, 2018,4(3):eaar7180.
doi: 10.1126/sciadv.aar7180 URL pmid: 29582018 |
[51] |
Shao Y, Dodelet J P, Wu G, et al. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges[J]. Advanced Materials, 2019,31(31):1807615.
doi: 10.1002/adma.v31.31 URL |
[52] | Serov A, Workman M J, Artyushkova K, et al. Highly stable precious metal-free cathode catalyst for fuel cell application[J]. Journal of Power Sources, 2016,327:557-564. |
[53] |
Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from poly-aniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832 URL pmid: 21512028 |
[54] | Proietti E, Jaouen F, Lefèvre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communication, 2011,2:416. |
[55] | Chenitz R, Kramm U I, Lefèvre M, et al. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy & Environmental Science, 2018,11(2):365-382. |
[56] | Martinez U, Babu S K, Holby E F, et al. Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2018,9:224-232. |
[57] |
Choi C H, Baldizzone C, Grote J P, et al. Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy[J]. Angewandte Chemie International Edition, 2015,54(43):12753-12757.
doi: 10.1002/anie.201504903 URL pmid: 26314711 |
[58] | Choi C H, Lim H K, Chung M W, et al. The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium[J]. Energy & Environmental Science, 2018,11(11):3176-3182. |
[59] | Zhang G X, Chenitz R, Lefèvre M, et al. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016,29:111-125. |
[60] | Du L, Prabhakaran V, Xie X H, et al. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: Stability challenges and material solutions[J]. Advanced Materials, 2020: 1908232. DOI: 10.1002/adma.201908232. |
[61] | Sahraie N R, Kramm U I, Steinberg J, et al. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts[J]. Nature Communication, 2015,6(1):1-9. |
[62] |
Wang J, Huang Z Q, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. Journal of the American Chemical Society, 2017,139(48):17281-17284.
URL pmid: 29135246 |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[3] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[4] | 王雪, 张丽, 刘长鹏, 葛君杰, 祝建兵, 邢巍. 碱性介质中非贵金属氧还原催化剂的结构调控进展[J]. 电化学(中英文), 2022, 28(2): 2108501-. |
[5] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[6] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[7] | 魏荣强, 李世安, 刘艺辉, 杨治, 沈秋婉, 杨国刚. 流道与肋宽比对气体扩散层性能影响的数值研究[J]. 电化学(中英文), 2021, 27(5): 579-585. |
[8] | 毛庆, 李冰玉, 景维云, 赵健, 刘松, 黄延强, 杜兆龙. 膜电极构型CO2还原电解单池的稳定性研究[J]. 电化学(中英文), 2020, 26(3): 359-369. |
[9] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[10] | 郭子英, 李作鹏, 李 江, 赵建国, 冯 锋. 电沉积铋膜电极差示脉冲溶出伏安法测定盐酸左氧氟沙星[J]. 电化学(中英文), 2019, 25(6): 792-801. |
[11] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
[12] | 饶妍,李赏,周芬,田甜,钟青,宛朝辉,谭金婷,潘牧. 低铂膜电极结构优化途径[J]. 电化学(中英文), 2018, 24(6): 677-686. |
[13] | 王克勇,石伟玉,王仁芳,刘佳,侯中军. 车用燃料电池系统耐久性研究[J]. 电化学(中英文), 2018, 24(6): 772-776. |
[14] | 刘勇,丁涵,司德春,彭杰,张剑波. 静电纺丝制备质子交换膜燃料电池催化剂层综述[J]. 电化学(中英文), 2018, 24(6): 639-654. |
[15] | 郭建伟,王建龙. 电化学阻抗谱在质子交换膜燃料电池动态的先导应用[J]. 电化学(中英文), 2018, 24(6): 687-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||