欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 563-572.  doi: 10.13208/j.electrochem.200314

• 研究论文 • 上一篇    下一篇

基于非贵金属氧还原催化剂的质子交换膜燃料电池性能

张焰峰1,2,3,4, 肖菲2, 陈广宇2,5, 邵敏华2,5,6,*()   

  1. 1.江苏奥新新能源汽车有限公司,江苏 盐城 224000
    2.香港科技大学化学及生物工程系,香港 九龙清水湾
    3.上海智能新能源汽车科创功能平台有限公司,上海 201805
    4.长三角新能源汽车研究院有限公司,江苏 盐城
    5.广州市香港科大霍英东研究院,广东 广州 511458
    6.香港科技大学能源研究院,香港 999077
  • 收稿日期:2020-03-14 修回日期:2020-05-08 出版日期:2020-08-28 发布日期:2020-05-20
  • 通讯作者: 邵敏华 E-mail:kemshao@ust.hk
  • 基金资助:
    国家重点研发计划新能源汽车重点专项(2017YFB0102900);国家重点研发计划新能源汽车重点专项(2018YFB0105700);佛山市香港科技大学产学研合作专项(FSUST19-FYTRI07);广东省基础与应用基础研究基金区域联合基金-青年基金项目资助(2019A1515110253)

Fuel Cell Performance of Non-Precious Metal Based Electrocatalysts

ZHANG Yan-feng1,2,3,4, XIAO Fei2, CHEN Guang-yu2,5, SHAO Min-hua2,5,6,*()   

  1. 1. Jiangsu Aoxin NEV Co., Ltd, Yancheng, Jiangsu, 224000, China
    2. Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
    3. Shanghai AI NEV Innovative Platform Co., Ltd, Shanghai, 201805, China
    4. Yangtse Delta Academy of NEV CO.,LTD, Yancheng, Jiangsu, 224000, China
    5. Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
    6. Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
  • Received:2020-03-14 Revised:2020-05-08 Published:2020-08-28 Online:2020-05-20
  • Contact: SHAO Min-hua E-mail:kemshao@ust.hk

摘要:

质子交换膜燃料电池的成本和寿命问题是制约其商业化的主要瓶颈. 开发高效稳定的新型非铂氧还原催化剂是降低电池成本的重要途径. 过渡金属-氮-碳型非贵金属催化剂具有较高催化活性、资源丰富、价格低廉等优点, 被认为是未来最有希望替代铂的氧还原催化剂. 本综述从催化剂的设计构筑、催化层结构优化以及电池测试等方面, 对过渡金属-氮-碳型非贵金属催化剂的国内外最新研究进展进行了重点讨论, 并对未来其发展趋势提出展望.

关键词: 质子交换膜燃料电池, 非贵金属催化剂, 膜电极, 耐久性

Abstract:

The commercialization of proton exchange membrane fuel cells (PEMFCs) is hindered by high cost and low durability of Pt based electrocatalysts. Developing efficient and durable non-precious metal catalysts is a promising approach to addressing these conundrums. Among them, transition metals dispersed in a nitrogen (N)-doped carbon support (M-N-C) show good oxygen reduction reaction activity. This article reviews recent progress in M-N-C catalysts development, focusing on the catalysts design, membrane electrode assembly fabrication, fuel cell performance, and durability testing. Template-assisted approach is an efficient way to synthesize M-N-C materials with homogeneously dispersed single atom active site and reduced metal particles, carbides formation. However, the issue related to low intensity of active sites should be addressed via strengthening metal-ligand interaction and using high surface area precursors. In general, the catalyst loading for the membrane electrode assembly (MEA) of non-precious catalyst is high (3 ~ 4 mg·cm-2) in order to obtain acceptable performance, which is also highly dependent on ink preparation and coating protocol, ionomer/catalyst ratio, etc. The highest power densities for Fe-N-C and Co-N-C are reported to be 1.18 and 0.87 W·cm-2 with O2 at the cathode, respectively. Despite the significant progress in non-precious metal catalysts development, the undesired durability (only a few hundreds of hours) is still far from the target of 5000 h by 2025. Thus, much more efforts should be spent on improving their durability.

Key words: proton exchange membrane fuel cells, non-precious metal catalysts, membrane electrode assembly, durability

中图分类号: