[1] Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): 1705789.
[2] Wang H Y, Zhou Q Q, Yao B W, et al. Suppressing the self-discharge of supercapacitors by modifying separators with an ionic polyelectrolyte[J]. Advanced Material Interfaces, 2018, 5(10): 1701547.
[3] Lang J W(郎俊伟), Zhang X(张旭), Wang R T(王儒涛), et al. Strategies to enhance energy density for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 507-532.
[4] Huang T(黄涛), Tao G Z(陶广智), Yang C Q(杨重庆), et al. Template induced fabrication of nitrogen doped carbon sheets as electrode materials in supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(6): 604-609.
[5] Ye J L(叶江林), Zhu Y W(朱彦武). Porous carbon materials produced by KOH activation for supercapacitor electrodes[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 548-559.
[6] Zhou Y S(周岳珅), Li M(李梦), Wu S(吴双), et al. Morphology control of ZnCo2O4 electrode materials and their electrochemical properties study on supercapacitors[J]. Journal of Electrochemistry(电化学), 2019, DOI: 10.13208/j.electrochem.180625.
[7] Shen L F, Che Q, Li H S, et al. Mesoporous NiCo2O4 nano-wire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014, 24(18): 2630-2637.
[8] Ma L B, Hu Y, Chen R P, et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016, 24: 139-147.
[9] Su L, Gao L J, Du Q H, et al. Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution[J]. Journal of Alloys and Compounds, 2018, 749: 900-908.
[10] Zhang S, Sui L N, Kang H Q, et al. High performance of N-doped graphene with bubble-like textures for supercapacitors[J]. Small, 2017, 14: UNSP1702570.
[11] Yu D F, Chen C, Zhao G Y, et al. Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors[J]. ChemSusChem, 2018, 11(10): 1678-1685.
[12] He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113.
[13] Chen C, Yu D F, Zhao G Y, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors[J]. Nano Energy, 2016, 27: 377-389.
[14] Song X L, Guo J X, Guo M X, et al. Freestanding needle-like polyaniline-coal based carbon nanofibers composites for flexible supercapacitor[J]. Electrochimica Acta, 2016, 206: 337-345.
[15] He X J, Li X J, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191.
[16] Pan L, Wang Y X, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors[J]. Carbon, 2018, 134: 345-353.
[17] Liu D C, Zhang W L, Lin H B, et al. A green technology for the preparation of high capacitance rice husk-based activated carbon[J]. Journal of Cleaner Production, 2016, 112: 1190-1198.
[18] Wu J Q, Yu D X, Zeng X P, et al. Ash formation and fouling during combustion of rice husk and its blends with a high alkali Xinjiang coal[J]. Energy & Fuels, 2018, 32(1): 416-424.
[19] Guo D C, Mi J, Hao G P, et al. Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors[J]. Energy & Environmental Science, 2013, 6(2): 652-659.
[20] Yang H M, Cui X J, Deng Y Q, et al. Ionic liquid templated preparation of carbon aerogels based on resorcinol-formaldehyde: properties and catalytic performance[J]. Journal of Materials Chemistry, 2012, 22(41): 21852-21856.
[21] Wang G, Ling Z, Li C P, et al. Ionic liquid as template to synthesize carbon xerogels by coupling with KOH activation for supercapacitors[J]. Electrochemistry Community, 2013, 31: 31-34.
[22] Prasath A, Athika M, Duraisamy E, et al. Carbon-quantum-dot-derived nanostructured MnO2 and its symmetrical supercapacitor performances[J]. ChemistrySelect, 2018, 3(30): 8713-8723.
[23] Kroon M C, Buijs W, Peters C J, et al. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids[J]. Thermochimica Acta, 2007, 465(1/2): 40-47.
[24] He X J, Ling P H, Yu M X, et al. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors[J]. Electrochimica Acta, 2013,105: 635-641.
[25] Xie K, Qin X T, Wang X Z, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3): 347-352.
[26] Hao L, Luo B, Li X L, et al. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors[J]. Energy & Environmental Science, 2012, 5(12): 9747-9751.
[27] Qie L, Chen W M, Xu H H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6(8): 2497-2504.
[28] Wang H J, Sun X X, Liu Z H, et al. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes[J]. Nanoscale, 2014, 6(12): 6577-6584.
[29] Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications[J]. Journal of Materials Chemistry A, 2013, 1(1): 14-19.
[30] Zhang J B, Jin L J, Cheng J, et al. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes[J]. Carbon, 2013, 55: 221-232. |