[1] Terranova M L, Orlanducci S, Tamburri E, et al. Si/C hybrid nanostructures for Li-ion anodes: An overview[J]. Journal of Power Sources, 2014, 246: 167-177.
[2] Zhang B(张波), Chen S T(陈思婷), Gao X P(高学平). Performance of sulfur-super conductive carbon black composite in electrolyte mixed with room temperature ionic liquid[J]. Journal of Electrochemistry(电化学),2010, 16(1): 36-38.
[3] Du W C, Yin Y X, Zeng X X, et al. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3584-3590.
[4] Xiao Z B, Yang Z, Wang L, et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(18): 2891-2898.
[5] Hu J J, Long G K, Liu S, et al. A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery[J]. Chemical Communications, 2014, 50: 14647-14650.
[6] Li N W, Yin Y X, Yang C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
[7] Chen J H(陈加航), Yang H J(杨慧军), Guo C(郭城), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistry(电化学),2019, 25(1): 3-16.
[8] Yang C P, Yin Y X, Ye H, et al. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8789-8795.
[9] Lyu Z Y, Xu D, Yang L J, et al. Hierarchical carbon nano-cages confining high-loading sulfur for high-rate lithium-sulfur batteries[J]. Nano Energy, 2015, 12: 657-665.
[10] Qiu Y C, Li W F, Zhao W, et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped grapheme[J]. Nano Letters, 2014, 14(8): 4821-4827.
[11] Zhu P Y, Song J X, Lv D P, et al. Mechanism of enhanced carbon cathode performance by nitrogen doping in lithium-sulfur battery: An X-ray absorption spectroscopic study[J]. The Journal of Physical Chemistry C, 2014, 118(15): 7765-7771.
[12] Lai C(赖超),Li G C(李国春), Ye S H(叶世海), et al. Sulfur-carbon composite as cathode with high capacity[J]. Progress in Chemistry(化学进展), 2011, 23(2/3): 527-532.
[13] Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769.
[14] Zhou L(周兰), Yu A S(余爱水). current status and prospect of cathode materials for lithium sulfur batteries[J]. Journal of Electrochemistry(电化学),2015, 21(3): 211-220.
[15] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3(10): 1531-1537.
[16] Liang X, Wen Z, Liu Y, et al. Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries[J]. Solid State Ionics, 2011, 192(1): 347-350.
[17] Zhang B, Zhao Y M, Liu J, X. et al. Impact of micro-/mesoporous carbonaceous structure on electrochemical performance of sulfur[J]. Electrochimica Acta, 2017, 248: 416-424.
[18] Xu J T, Ma J M, Fan Q H, et al. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries[J]. Advanced Materials, 2017, 29: 1606454.
[19] Wang D X, Fu A P, Li H L, et al. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 285: 469-477.
[20] Fu Y Z, Manthiram A. Core-shell structured sulfur-polypy-rrole composite cathodes for lithium-sulfur batteries[J]. RSC Advances, 2012, 2(14): 5927-5929.
[21] Guo J X, Zhang J, Jiang F, et al. Microporous carbon nanosheets derived from corncobs for lithium-sulfur batteries[J]. Electrochimica Acta, 2015, 176: 853-860.
[22] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
[23] Miao L X, Wang W K, Wang A B, et al. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(38): 11659-11664.
[24] Guo Z J, Zhang B, Li D, et al. A mixed microporous/low-range mesoporous composite with high sulfur loading from hierarchically-structured carbon for lithium sulfur batteries[J]. Electrochimica Acta, 2017, 230: 181-188.
[25] Zhou W D, Xiao X C, Cai M, et al. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries[J]. Nano letters, 2014, 14(9): 5250-5256.
[26] Zhang Z Y, Lai Y Q, Zhang Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61.
[27] Zhang K, Wen M, Wang S, et al. Sputter deposited NbCxNy films: Effect of nitrogen content on structure and mechanical and tribological properties[J]. Surface and Coatings Technology, 2014, 258: 746-753.
|