[1] 吴宇平,袁翔云,董超等. 锂离子电池[M]. 北京:化学工业出版社,2012:3-30.
[2] 黄可龙,王兆翔,刘素琴. 锂离子电池原理与关键技术[M]. 北京:化学工业出版社,2008,5-70.
[3] Armand T.M., Tarascon J.M.. Buiding better batteries. [J] Nature, 2008, 451(7179), 652-657.
[4] Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J.M., Li-O2 and Li-S batteries with high energy storage. [J] Nature Materials, 2012, 11 (1), 19-29.
[5] Manthiram A., Fu Y., Su Y.S. Challenges and Prospects of lithium sulfur batteries.[J] Account of Chemical Research, 2013, 46 (5), 1125-1134.
[6] Manthiram A., Fu Y., Chung S.-H. et al. Rechargeable lithium−sulfur batteries.[J] Chemical Reviews, 2014, 114 (23), 11751-11787.
[7] Yang Y., Zheng G.Y., Cui Y., Nanostructured sulfur cathode.[J] Chemical Society Reviews, 2013, 42(7), 3018-3032.
[8] Ji X.L., Lee K.T. Nazar L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries.[J] Nature Materials, 2009, 8(6), 500-506.
[9] Schuster J. He G. Mandlmeier B. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. [J] Angewandte Chemie International Edition, 2012, 51 (15), 3591-3595
[10] Zhang K., Qin F, Lai Y. et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery. [J] ACS Applied Materials &Interfaces 2016, 8 (9), 6072-6081.
[11] Yang K., Gao Q.M., Yanli Tan, Tian W. Q. et al. Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries.[J] Chemistry-A Europe Journal. 2016, 22(10), 3239-3244.
[12] Zhang Z.W., Li Z.Q., Hao F.B. et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. [J] Advanced Functional Materials. 2014, 24(17), 2500-2509.
[13] Li D, Han F, Wang S, et al. High sulfur loading cathodes fabricated using peapod like, large pore volume mesoporous carbon for lithium sulfur batteries.[J] ACS Applied Materials&Interfaces. 2013, 5(6), 2208-2213.
[14] Liang C.D., Dudney N.J. , Howe J.Y., Hierarchically structured sulfur/carbon nanocomposite material for
high-energy lithium battery[J] Chemistry of Materials, 2009, 21(19), 4724-4730.
[15] Zhang B., Lai Cai, Zhou Z, et al. Preparation and electrochemical properties of sulfur acetylene black composites as cathode material [J] Electrochimica Acta, 2009,54(14), 3708-3713.
[16] He G., Ji X.L. Nazar L.F., High “C” rate Li-S cathode: sulfur imbibed bimodal porous carbons[J] Energy&Environmental Science, 2011, 4(8), 2878-2883.
[17] Zhang B., Qin X., Lai G. R., et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. [J] Energy & Environmental Science. 2010, 3(10),1531-1537.
[18] Xin S, Gu L., Zhao N.-H., et al. Smaller sulfur molecules promise better lithium-sulfur batteries. [J] Journal of American Chemistry Society. 2012, 134(45), 18510−18513.
[19] Li Z., Yuan L., Yi Z., et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. [J] Advanced Energy Materials. 2014, 4(7), 1301473.
[20] Li Z., Jiang Y., Yuan L., et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S Batteries. [J] ACS Nano. 2014, 8(9), 9295-9303.
[21] Wang J.L., Yang J., Wang C.R.,et al. Sulfur composite cathode materials for rechargeable lithium batteries. [J] Advanced Functional Materials, 2003, 13(6), 487-492.
[22] Xiao L.F., Cao Y.L. Xiao J., et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. [J] Advanced Materials. 2012, 24(9), 1176-1181.
[23] Li W.Y., Zhang Q.F., Zheng G.Y., et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. [J] Nano Letters, 2013, 13(11), 5534-5540.
[24] Zheng G.Y., Zhang Q.F., Cha J., et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. [J] Nano Letters, 2013, 13(3), 1265-1270.
[25] Qiu Y., Li W.F., Zhao W., et al. High-rate, ultralong cycle-Life lithium/sulfur batteries enabled by nitrogen-doped graphene [J] Nano Letters, 2014, 14(8), 4821-4827.
[26] Song J.X., Xu T., Gordin M.L., et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries [J] Advanced Functional Materials, 2014, 24(9), 1243-1250.
[27] Yuan S.Y., Bao L., Wang L.N., et al. Graphene-supported nitrogen and boron rich carbon layer for improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. [J] Advanced Energy Materials, 2016, 6(5), 1501733.
[28] Song J.X, Gordin M., Xu T.,et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. [J] Angewandte Chemie International Edition. 2015, 54(14), 4325-4329.
[29] Pang Q., Tang J.T., He H., et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. [J] Advanced Materials. 2015, 27(39), 6021-6028.
[30] Wang H.L., Yang Y., Liang Y., et al. Graphene-Wrapped Sulfur Particles as a Rechargeable LithiumSulfur Battery Cathode Material with High Capacity and Cycling Stability. [J] Nano Letters, 2011, 11(7), 2644-2647.
[31] Ji L.W., Rao M.M., Zheng H.M., et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. [J] Journal of American Chemistry Society. 2011, 133(46), 18522-18525.
[32] Liang X., Hart C., Pang Q., et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. [J] Nature Communications. 2015, 6, 5682.
[33] Chen R. J., Zhao T., Lu J., et al. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries.[J]. Nano Letters, 2013, 13(10), 4642.
[34] Zhao M.Q., Liu X.F., Zhang Q., et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.[J] ACS Nano, 2012, 6(12), 10759-10769.
[35] Yuan S.Y., Guo Z.Y., Wang L.N., et al. Leaf-like graphene-oxide wrapped sulfur for high-performance lithium-sulfur Battery.[J] Advanced Science, 2015, 2(8), 1500071.
[36] Younesi R., Veith M., Johansson P., et al. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. [J] Energy& Environmental Science, 2015, 8(7), 1905-1922.
[37] Zhang S. S. The role of LiNO3 in rechargeable lithium/sulfur battery.[J] Electrochimica Acta, 2012, 70, 78-86.
[38] Suo L.M., Hu Y.S., Li H., et al. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. [J] Nature Communications, 2013, 4, 1481.
[39] Li W.Y., Yao H.B., Yan K., et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. [J] Nature Communications, 2015, 6, 7436.
[40] Gordin M.L., Dai F., Chen S.R., et al., Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. [J] ACS Applied Materials&Interfaces, 2014, 6(11), 8006-8010.
[41] Wang L.N., Liu J.Y., Yuan S.Y., et al., To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes. [J] Energy&Environmental Science, 2016, 9(1), 224-231.
[42]Wang J.L., Lin F.J., Jia H., et al. Towards a Safe Lithium-Sulfur Battery with a Flame-Inhibiting Electrolyte and a Sulfur-Based Composite Cathode. [J] Angewandte Chemie International Edition, 2014, 53(38), 10099-10104.
[43] Su Y.S., Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. [J], Nature Communications , 2012, 3, 1166.
[44] Chung S-H., Manthiram A., Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries.[J] Advanced Functional Materials, 2014, 24(33), 5209-5216.
[45] Chung S-H., Manthiram A., High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. [J] Journal of Physical Chemistry Letters, 2014, 5,(11) 1978-1983.
[46] Zhou G.M., Pei S.F., Li L., et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. [J] Advanced Materials, 2013, 25(4), 625-631.
[47] Wang L.N., Liu J.Y., Haller S., et al. A scalable hybrid separator for a high performance lithium-sulfur battery. [J] Chemical Communication , 2015, 51(32), 6996-6999.
[48] Nan C.Y., Lin Z., Liao H.G., et al., Durable Carbon-Coated Li2S Core-Shell Spheres for High Performance Lithium/Sulfur Cells. [J] Journal of the American Chemical Society, 2014, 136(12), 4659-4663.
[49] Qiu Y.C., Rong G.L., Yang J., et al., Highly nitridated graphene-Li2S cathodes with stable modulated cycles. [J] Advanced Energy Materials, 2015, 5(23), 1501369.
[50] Seh Z. W., Yu J.H., Li W.Y., et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. [J] Nature Communications, 2014, 5, 5017.
[51]Zu C.X., Klein M., Manthiram A., et al. Activated Li2S as a high-performance cathode for rechargeable lithium-sulfur batteries. [J] Advanced Energy Materials, 2014, 5(22),3986-3991.
[52] Wang L.N., Wang Y.G., Xia Y.Y., A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. [J] Energy&Environmental Science, 2015, 8(5), 1551-1558. |