[1] Wilson M S, Gottesfeld S. High performance catalyzed membranes of ultra-low pt loadings for polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society, 1992, 139(2): L28-L30.
[2] Wilson M S, Gottesfeld S. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 1992, 22(1): 1-7.
[3] Reiser C A, Bregoli L, Patterson T W, et al. A reverse-current decay mechanism for fuel cells[J]. Electrochemical and Solid-State Letters, 2005, 8(6): A273-A276.
[4] Stevens D A, Hicks M T, Haugen G M, et al., Ex situ and in situ stability studies of PEMFC catalysts: Effect of carbon type and humidification on degradation of the carbon[J]. Journal of The Electrochemical Society, 2005, 152(12): A2309-A2315.
[5] Schlögl K, Hanzlik M, Arenz M, Comparative IL-TEM study concerning the degradation of carbon supported pt-based electrocatalysts[J]. Journal of The Electrochemical Society, 2012, 159(6): B677-B682.
[6] Roen L M, Paik C H, Jarvi T D, Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochemical and Solid-State Letters, 2004, 7(1): A19-A22.
[7] Meier J C, Galeano C, Katsounaros I, et al., Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. ACS Catalysis, 2012, 2(5): 832-843.
[8] Mayrhofer K J J, Ashton S J, Meier J C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment[J]. Journal of Power Sources, 2008, 185(2): 734-739.
[9] Rabis A, Rodriguez P, Schmidt T J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges[J]. ACS Catalysis, 2012, 2(5): 864-890.
[10] Schulenburg H, Schwanitz B, Linse N, et al. 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry C, 2011, 115(29): 14236-14243.
[11] Shao Y, Yin G, Gao Y, et al. Durability study of Pt ∕ C and Pt ∕ CNTs catalysts under simulated PEM fuel cell conditions[J]. Journal of The Electrochemical Society, 2006, 153(6): A1093-A1097.
[12] Okamoto M, Fujigaya T, Nakashima N. Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure[J]. Small, 2009, 5(6): 735-740.
[13] Maiyalagan T, Viswanathan B, Varadaraju U V. Nitrogen containing carbon nanotubes as supports for Pt - alternate anodes for fuel cell applications[J]. Electrochemistry Communications, 2005, 7(9): 905-912.
[14] Hasche F, Oezaslan M, Strasser P. Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts[J]. Physical Chemistry Chemical Physics, 2010, 12(46): 15251-15258.
[15] Hafez I H, Berber M R, Fujigaya T, et al. Enhancement of platinum mass activity on the surface of Polymer-wrapped carbon nanotube-based fuel cell electrocatalysts[J]. Scientific Reports, 2014, 4: 6295.
[16] Fujigaya T, Okamoto M, Nakashima N. Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area[J]. Carbon, 2009, 47(14): 3227-3232.
[17] Fujigaya T, Nakashima N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials[J]. Advanced Materials, 2013, 25(12): 1666-1681.
[18] Fujigaya T, Hirata S, Nakashima N. A highly durable fuel cell electrocatalyst based on polybenzimidazole-coated stacked graphene[J]. Journal of Materials Chemistry A, 2014, 2(11): 3888-3893.
[19] Du H Y, Wang C H, Yang C S, et al. A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(19): 7015-7019.
[20] Zhang L W, Zheng N, Gao A, et al. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters[J]. Journal of Power Sources, 2012, 220: 449-454.
[21] Yoshitake T, Shimakawa Y, Kuroshima S, et al. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application[J]. Physica B: Condensed Matter, 2002, 323(1/4): 124-126.
[22] Kou R, Shao Y Y, Wang D H, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction[J]. Electrochemistry Communications, 2009, 11(5): 954-957.
[23] Maruyama J, Sumino K-i, Kawaguchi M, et al. Influence of activated carbon pore structure on oxygen reduction at catalyst layers supported on rotating disk electrodes[J]. Carbon, 2004, 42(15): 3115-3121.
[24] Maruyama J, Abe I. Effective utilization of nanospaces in activated carbon for enhancing catalytic activity in fuel cell electrodes[J]. Journal of The Electrochemical Society, 2004, 151(3): A447-A451.
[25] Qi J, Jiang L H, Wang S L, et al. Synthesis of graphitic mesoporous carbons with high surface areas and their applications in direct methanol fuel cells[J]. Applied Catalysis B: Environmental, 2011, 107(1/2): 95-103.
[26] Zhou Z H, Wang S L, Zhou W L, et al. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell[J]. Chemical Communications, 2003, 3: 394-395.
[27] Gloaguen F, Andolfatto F, Durand R, et al. Kinetic study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modelling[J]. Journal of Applied Electrochemistry, 1994, 24(9): 863-869.
[28] Paulus U A, Schmidt T J, Gasteiger H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal of Electroanalytical Chemistry, 2001, 495(2): 134-145.
[29] Garsany Y, Baturina O A, Swider-Lyons K E, et al. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction[J]. Analytical Chemistry, 2010, 82(15): 6321-6328.
[30] ōya A, Marsh H. Phenomena of catalytic graphitization[J]. Journal of Materials Science, 1982, 17(2): 309-322.
[31] Marsh H, Crawford D, Taylor D W. Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725-1090 K. A high resolution electron microscope study[J]. Carbon, 1983, 21(1): 81-87.
[32] Derbyshire F J, Presland A E B, Trimm D L. Graphite formation by the dissolution-precipitation of carbon in cobalt, nickel and iron[J]. Carbon, 1975, 13(2): 111-113.
[33] Lei Z, Lu L, Zhao X S. The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy & Environmental Science, 2012, 5(4): 6391-6399.
[34] Sevilla M, Sanchís C, Valdés-Solís T, et al. Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports[J]. The Journal of Physical Chemistry C, 2007, 111(27): 9749-9756.
[35] Wu G, Mack N H, Gao W, et al. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous Lithium-O2 battery cathodes[J]. ACS Nano, 2012, 6(11): 9764-9776.
[36] Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
[37] Mason K S, Neyerlin K C, Kuo M-C, et al. Investigation of a silicotungstic acid functionalized carbon on Pt activity and durability for the oxygen reduction reaction[J]. Journal of The Electrochemical Society, 2012, 159(12): F871-F879.
[38] Riese A, Banham D, Ye S, et al. Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports[J]. Journal of The Electrochemical Society, 2015, 162(7): F783-F788.
[39] Tarasevich M R, Bogdanovskaya V A, Zagudaeva N M. Redox reactions of quinones on carbon materials[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 223(1/2): 161-169.
[40] Artyushkova K, Pylypenko S, Dowlapalli M, et al. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks[J]. Journal of Power Sources, 2012, 214: 303-313. |