[1] Haile S M, Boysen D A, Chisholm C R I, et al. Solid acids as fuel cell electrolytes[J]. Nature, 2001, 410(6831): 910-913.
[2] Jaffray C, Hards G A, Precious metal supply requirements, in: Vielstich W, Lamm A and Gasteiger H (Eds.), Handbook of Fuel Cells –Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 3, Chapter 41.
[3] Wilson M S, Gottesfeld S High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells[J]. Journal of the electrochemical Society, 1992, 139(2): L28-L30.
[4] Wilson M S, Gottesfeld S Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal appled electrochemistry, 1992, 22: 1-7.
[5] Gasteiger H A, Panels J E, Yan S G Dependence of PEM fuel cell performance on catalyst loading[J]. Journal of Power Sources, 2004, 127(1-2): 162-171.
[6] Markovic N M, The hydrogen electrode reaction and the electrooxidation of CO and H2/CO mixtures on well-characterized Pt and Ptbimetallic surfaces, in: Vielstich W, Gasteiger H, Lamm A(Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 2, Chapter 26.
[7] Gasteiger H A, Gu W, Makharia R, et al., Beginning-of-life MEA performance: efficiency loss contributions, in: Vielstich W, Lamm A and Gasteiger H A (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications[M]. Wiley, Chichester, UK, 2003, Vol. 3, Chapter 46.
[8] http://www.most.gov.cn/mostinfo/xinxifenlei/fgzc/gfxwj/gfxwj2015/201511/W020151116518899847160.doc
[9] Debe M K Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7): 43-51.
[10] Gong K P, Du F, Xia Z H, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009, 323(5915): 760-764.
[11] Tian Z Q, Lim S H, Poh C K, et al. A Highly Order-Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra-Low Pt Loading PEM Fuel Cells[J]. Advanced energy materials, 2011, 1(6): 1205-1214.
[12] Debe M K, Schmoeckel A K, Vernstrorn G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011.
[13] Sun S, Zhang H, Pan M, Dynamic simulation of oxygen transport rates in highly ordered electrodes for proton exchange membrane fuel cells[J]. Fuel cell, 2015, 15(3): 456-462.
[14] The US Department of Energy. Energy Efficiency and Renewable Energy, http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf, 2012.
[15] Paulus U A, Schmidt T J, Gasteiger H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal of electroanalytical chemistry, 2001, 495(2): 134-145.
[16] Parthasarathy A, Srinivasan S, Appleby A J, et al. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/nafion® Interface — A microelectrode investigation[J]. Journal of the electrochemical Society, 1992, 139 (9): 2530–2537.
[17] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied catalysis B: Environmental, 2005, 56: 9–35.
[18] Zhang J L, Tang Y H, Song C J, et al. PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 degrees C to 120 degrees C[J]. Journal of Power Sources, 2006, 163(1): 532–537.
[19] Song C J, Zhang J J, Electrocatalytic Oxygen Reduction Reaction, in: Zhang J J (Ed.), PEM Fuel Cell Electrocatalyts and Catalyst Layers – Fundamentals and Applications[M]. Springer, 2008.
[20] Zha Q X (査全性),电极过程动力学导论[M],北京,科学出版社,2002, 345-377. |