[1] Jacobson M Z, Colella W G, Golden D M. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730): 1901-1905.[2] Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.[3] Chen Z W, Higgins D, Yu A P, et al. A review on non-precious metal electrocatalysts for PEM fuel cells[J]. Energy & Environmental Science, 2011, 4(9): 3167-3192.[4] Ou L H, Chen S L. Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT[J]. Journal of Physical Chemistry C, 2013, 117(3): 1342-1349.[5] Peng Z M, Yang H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures[J]. Journal of the American Chemical Society, 2009, 131(22): 7542-7543.[6] Liu L, Samjeske G, Nagamatsu S, et al. Enhanced oxygen reduction reaction activity and characterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media[J]. Journal of Physical Chemistry C, 2012, 116(44): 23453-23464.[7] Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Physica Status Solidi B-Basic Solid State Physics, 2008, 245(9): 1792-1806.[8] Wang R Y, Xu C X, Bi X X, et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts[J]. Energy & Environmental Science, 2012, 5(1): 5281-5286.[9] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.[10] Wu L F, Feng H B, Liu M J, et al. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction[J]. Nanoscale, 2013, 5(22): 10839-10843.[11] Chen W, Kim J M, Sun S H, et al. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(10): 3891-3898.[12] Kang Y J, Ye X C, Chen J, et al. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions[J]. Journal of the American Chemical Society, 2013, 135(1): 42-45.[13] Hwang S J, Yoo S J, Jang S, et al. Ternary Pt-Fe-Co alloy electrocatalysts prepared by electrodeposition: Elucidating the roles of Fe and Co in the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2011, 115(5): 2483-2488.[14] Sarkar A, Murugan A V, Manthiram A. Pt-encapsulated Pd-Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells[J]. Langmuir, 2010, 26(4): 2894-2903.[15] Zhang Q, Li W, Wen L P, et al. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor[J]. Chemistry-A European Journal, 2010, 16(33): 10234-10239.[16] Shim J H, Yang J, Kim S J, et al. One dimensional Ag/Au/AgCl nanocomposites stemmed from Ag nanowires for electrocatalysis of oxygen reduction[J]. Journal of Materials Chemistry, 2012, 22(30): 15285-15290.[17] Lee Y, Loew A, Sun S H. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction[J]. Chemistry of Materials, 2010, 22(3): 755-761.[18] Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C, 2007, 111(3): 1434-1443.[19] Zhang D(张栋), Zhang C Z(张存中), Mu D B(穆道斌), et al. A Review of Ag-based catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica(化学学报), 2013, 71(8): 1101-1110.[20] Lu Y Z, Chen W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries[J]. Chemical Society Reviews, 2012, 41(9): 3594-3623.[21] Guo J S, Zhou J, Chu D, et al. Tuning the electrochemical interface of Ag/C electrodes in alkaline media with metallophthalocyanine molecules[J]. Journal of Physical Chemistry C, 2013, 117(8): 4006-4017.[22] Liu M, Chen W. Green synthesis of silver nanoclusters supported on carbon nanodots: Enhanced photoluminescence and high catalytic activity for oxygen reduction reaction[J]. Nanoscale, 2013, 5(24): 12558-12564.[23] Wei W T, Chen W. "Naked" Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells[J]. Journal of Power Sources, 2012, 204: 85-88.[24] Zhang Z P, Zhang J, Chen N, et al. Graphene quantum dots: An emerging material for energy-related applications and beyond[J]. Energy & Environmental Science, 2012, 5(10): 8869-8890.[25] Dong Y Q, Li G L, Zhou, N N, et al. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water[J]. Analytical Chemistry, 2012, 84(19): 8378-8382.[26] He G Q, Song Y, Liu K, et al. Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots[J]. ACS Catalysis, 2013, 3(5): 831-838.[27] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2): 844-849.[28] Shen J H, Zhu Y H, Yang X L, et al. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications, 2012, 48(31): 3686-3699.[29] Li L L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14): 2971-2979.[30] Pan D Y, Guo L, Zhang J C, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. Journal of Materials Chemistry, 2012, 22(8): 3314-3318.[31] Chen W, Chen S W. Oxygen electroreduction catalyzed by gold nanoclusters: Strong core size effects[J]. Angewandte Chemie-International Edition, 2009, 48(24): 4386-4389.[32] Liu M J, Dong Y Z, Wu Y M, et al. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction[J]. Chemistry-A European Journal, 2013, 19(44): 14781-14786. |