[1] McBreen J. The application of synchrotron techniques to the study of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2009, 13(7): 1051-1061.[2] Deb A, Cairns E J. In situ X-ray absorption spectroscopy - A probe of cathode materials for Li-ion cells[J]. Fluid Phase Equilibria, 2006, 241(1/2): 4-19.[3] Nam K W, Bak S M, Hu E Y, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 1047-1063.[4] Bak S M, Nam K W, Chang W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25(3): 337-351.[5] Wang X J, Chen H Y, Yu X Q, et al. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4[J]. Chemical Communications, 2011, 47(25): 7170-7172.[6] Palacin M R, Le Cras F, Seguin L, et al. In situ structural study of 4V-range lithium extraction insertion in fluorine-substituted LiMn2O4[J]. Journal of Solid State Chemistry, 1999, 144(2): 361-371.[7] Balasubramanian M, Sun X, Yang X Q, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries[J]. Journal of Power Sources, 2001, 92(1/2): 1-8.[8] Novak P, Goers D, Hardwick L, et al. Advanced in situ characterization methods applied to carbonaceous materials[J]. Journal of Power Sources, 2005, 146(1/2): 15-20.[9] Baehtz C, Buhrmester T, Bramnik N N, et al. Design and performance of an electrochemical in-situ cell for high resolution full-pattern X-ray powder diffraction[J]. Solid State Ionics, 2005, 176(17/18): 1647-1652.[10] Liu R S, Wang C Y, Drozd V A, et al. A novel anode material LiVMoO6 for rechargeable lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2005, 8(12): A650-A653.[11] Hirayama M, Sonoyama N, Ito M, et al. Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode[J]. Journal of The Electrochemical Society, 2007, 154(11): A1065-A1072.[12] Renner F U, Kageyama H, Siroma Z, et al. Gold model anodes for Li-ion batteries: Single crystalline systems studied by in situ X-ray diffraction[J]. Electrochimica Acta, 2008, 53(21): 6064-6069.[13] Borkiewicz O J, Shyam B, Wiaderek K M, et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements[J]. Journal of Applied Crystallography, 2012, 45: 1261-1269.[14] Amatucci G G, Tarascon J M, Klein L C. CoO2, the end member of the LixCoO2 solid solution[J]. Journal of The Electrochemical Society, 1996, 143(3): 1114-1123.[15] Tarascon J M, Vaughan G, Chabre Y, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J]. Journal of Solid State Chemistry, 1999, 147(1): 410-420.[16] Yang X Q, Sun X, McBreen J. New phases and phase transitions observed in Li1-xCoO2 during charge: In situ synchrotron X-ray diffraction studies[J]. Electrochemistry Communications, 2000, 2(2): 100-103.[17] Albertini V R, Perfetti P, Ronci F, et al. In situ studies of electrodic materials in Li-ion cells upon cycling performed by very-high-energy X-ray diffraction[J]. Applied Physics Letters, 2001, 79(1): 27-29.[18] Sun X, Yang X Q, McBreen J, et al. New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials[J]. Journal of Power Sources, 2001, 97-98(S1): 274-276.[19] Gross T, Buhrmester T, Bramnik K G, et al. Structure-intercalation relationships in LiNiyCo1-yO2[J]. Solid State Ionics, 2005, 176(13/14): 1193-1199.[20] Liao P Y, Duh J G, Sheu H S. In situ synchrotron X-ray studies of LiNi1-x-yCoyMnxO2 cathode materials[J]. Electrochemical and Solid State Letters, 2007, 10(4): A88-A92.[21] Cook J B, Kim C, Xu L P, et al. The effect of Al substitution on the chemical and electrochemical phase stability of orthorhombic LiMnO2[J]. Journal of The Electrochemical Society, 2013, 160(1): A46-A52.[22] Yoon W S, Chung K Y, McBreen J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD[J]. Electrochemistry Communications, 2006, 8(8): 1257-1262.[23] Yoon W S, Nam K W, Jang D, et al. The kinetic effect on structural behavior of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 cathode materials studied by in situ time-resolved X-ray diffraction technique[J]. Electrochemistry Communications, 2012, 15(1): 74-77.[24] Chung K Y, Yoon W S, McBreen J, et al. In situ X-ray diffraction studies on the mechanism of capacity retention improvement by coating at the surface of LiCoO2[J]. Journal of Power Sources, 2007, 174(2): 619-623.[25] Chung K Y, Yoon W S, Lee H S, et al. In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries[J]. Journal of Power Sources, 2006, 163(1): 185-190.[26] Liu L J, Chen L Q, Huang X J, et al. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material[J]. Journal of The Electrochemical Society, 2004, 151(9): A1344-A1351.[27] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/LiNixLi1/3-2x/3Mn2/3-x/3O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of The Electrochemical Society, 2002, 149(7): A815-A822.[28] Mukerjee S, Thurston T R, Jisrawi N M, et al. Structural evolution of LixMn2O4 in lithium-ion battery cells measured in situ using synchrotron X-ray diffraction techniques[J]. Journal of The Electrochemical Society, 1998, 145(2): 466-472.[29] Thurston T R, Jisrawi N M, Mukerjee S, et al. Synchrotron X-ray diffraction studies of the structural properties of electrode materials in operating battery cells[J]. Applied Physics Letters, 1996, 69(2): 194-196.[30] Palacin M R, Chabre Y, Dupont L, et al. On the origin of the 3.3 and 4.5 V steps observed in LiMn2O4-based spinels[J]. Journal of The Electrochemical Society, 2000, 147(3): 845-853.[31] Chung K Y, Lee H S, Yoon W S, et al. Studies of LiMn2O4 capacity fading at elevated temperature using in situ synchrotron X-ray diffraction[J]. Journal of The Electrochemical Society, 2006, 153(4): A774-A780.[32] Mukerjee S, Yang X Q, Sun X, et al. In Solid State Ionics V[M]. Nazri, G. A., Julien, C., Rougier, A., Eds., Materials Research Society: Warrendale, 1999, Vol. 548, p 149-160.[33] Ein-Eli Y, Urian R C, Wen W, et al. Low temperature performance of copper/nickel modified LiMn2O4 spinels[J]. Electrochimica Acta, 2005, 50(9): 1931-1937.[34] Wen W, Kumarasamy B, Mukerjee S, et al. Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5-xMn1.5+xO4 (0 ≤ x ≤ 0.5) cathode materials - In situ XRD and XANES spectroscopy studies[J]. Journal of The Electrochemical Society, 2005, 152(9): A1902-A1911.[35] Mukerjee S, Yang X Q, Sun X, et al. In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries[J]. Electrochimica Acta, 2004, 49(20): 3373-3382.[36] Bhaskar A, Bramnik N N, Trots D M, et al. In situ synchrotron diffraction study of charge-discharge mechanism of sol gel synthesized LiM0.5Mn1.5O4 (M = Fe, Co)[J]. Journal of Power Sources, 2012, 217: 464-469.[37] Shin H C, Chung K Y, Min W S, et al. Asymmetry between charge and discharge during high rate cycling in LiFePO4 - In situ X-ray diffraction study[J]. Electrochemistry Communications, 2008, 10(4): 536-540.[38] Shin H C, Bin Park S, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling[J]. Electrochimica Acta, 2008, 53(27): 7946-7951.[39] Shin H C, Nam K W, Chang W Y, et al. Comparative studies on C-coated and uncoated LiFePO4 cycling at various rates and temperatures using synchrotron based in situ X-ray diffraction[J]. Electrochimica Acta, 2011, 56(3): 1182-1189.[40] Nam K W, Wang X J, Yoon W S, et al. In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge[J]. Electrochemistry Communications, 2009, 11(4): 913-916.[41] Bramnik N N, Nikolowski K, Baehtz C, et al. Phase transitions occurring upon lithium insertion-extraction of LiCoPO4[J]. Chemistry of Materials, 2007, 19(4): 908-915.[42] Bramnik N N, Bramnik K G, Baehtz C, et al. Study of the effect of different synthesis routes on Li extraction-insertion from LiCoPO4[J]. Journal of Power Sources, 2005, 145(1): 74-81.[43] Bramnik N N, Trots D M, Hofmann H J, et al. Mixed LiCo0.6M0.4PO4 (M = Mn, Fe, Ni) phosphates: Cycling mechanism and thermal stability[J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3271-3277.[44] Hao X G(郝小罡), Liu Z G(刘子庚), Gong Z L(龚正良), et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica(中国科学:化学), 2012, 42(1): 38-46.[45] Lv D, Bai J, Zhang P, et al. Understanding the High Capacity of Li2FeSiO4: In situ XRD/XANES study combined with first-principles calculations[J]. Chemistry of Materials, 2013, 25(10): 2014-2020.[46] D'Arienzo M, Ruffo R, Scotti R, et al. Layered Na0.71CoO2: A powerful candidate for viable and high performance Na-batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(17): 5945-5952.[47] Misra S, Liu N, Nelson J, et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes[J]. Acs Nano, 2012, 6(6): 5465-5473.[48] Yoon W S, Balasubramanian M, Chung K Y, et al. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy[J]. Journal of the American Chemical Society, 2005, 127(49): 17479-17487.[49] Liao P Y, Duh J G, Lee J F. Valence change and local structure during cycling of layer-structured cathode materials[J]. Journal Of Power Sources, 2009, 189(1): 9-15.[50] Liao P Y, Duh J G, Lee J F, et al. Structural investigation of Li1-xNi0.5Co0.25Mn0.25O2 by in situ XAS and XRD measurements[J]. Electrochimica Acta, 2007, 53(4): 1850-1857.[51] Ito A, Sato Y, Sanada T, et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material LiNi0.17Li0.2Co0.07Mn0.56O2[J]. Journal of Power Sources, 2011, 196(16): 6828-6834.[52] Haas O, Deb A, Cairns E J, et al. Synchrotron X-ray absorption study of LiFePO4 electrodes[J]. Journal of The Electrochemical Society, 2005, 152(1): A191-A196.[53] Chen Y C, Chen J M, Hsu C H, et al. In-situ synchrotron X-ray absorption studies of LiMn0.25Fe0.75PO4 as a cathode material for lithium ion batteries[J]. Solid State Ionics, 2009, 180(20-22): 1215-1219.[54] Leriche J B, Hamelet S, Shu J, et al. An electrochemical cell for operando study of lithium batteries using synchrotron radiation[J]. Journalof The Electrochemical Society, 2010, 157(5): A606-A610.[55] Wang X J, Jaye C, Nam K W, et al. Investigation of the structural changes in Li1-xFePO4 upon charging by synchrotron radiation techniques[J]. Journal of Materials Chemistry, 2011, 21(30): 11406-11411.[56] Ouvrard G, Zerrouki M, Soudan P, et al. Heterogeneous behaviour of the lithium battery composite electrode LiFePO4[J]. Journal of Power Sources, 2013, 229: 16-21.[57] Yu X Q, Wang Q, Zhou Y N, et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy[J]. Chemical Communications, 2012, 48(94): 11537-11539.[58] Dominko R, Arcon I, Kodre A, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1): 51-58.[59] Lv D P, Wen W, Huang X K, et al. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity[J]. Journal of Materials Chemistry, 2011, 21(26): 9506-9512.[60] Kokalj A, Dominko R, Mali G, et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4[J]. Chemistry Of Materials, 2007, 19(15): 3633-3640.[61] Lowe M A, Gao J, Abruna H D. In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(6): 2094-2103.[62] Zhang W, Duchesne P N, Gong Z, et al. In situ electrochemical XAFS studies on an iron fluoride high capacity cathode material for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2013, 117(22): 11498-11505[63] Hirayama M, Sonoyama N, Abe T, et al. Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron X-ray reflectometry - A new experimental technique for LiCoO2 model electrode[J]. Journal Of Power Sources, 2007, 168(2): 493-500.[64] Hirayama M, Sakamoto K, Hiraide T, et al. Characterization of electrode/electrolyte interface using in situ X-ray reflectometry and LiNi0.8Co0.2O2 epitaxial film electrode synthesized by pulsed laser deposition method[J]. Electrochimica Acta, 2007, 53(2): 871-881.[65] Robert R, Zeng D L, Lanzirotti A, et al. Scanning X-ray fluorescence imaging study of lithium insertion into copper based oxysulfides for Li-ion batteries[J]. Chemistry of Materials, 2012, 24(14): 2684-2691. |