[1] Yamakawa N, Jiang M, Key B, et al. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: A solid-state NMR, X-ray diffraction, and pair distribution function analysis study[J]. Journal of the American Chemical Society, 2009, 131(30):10525-10536.[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3), 587-603.[3] Bervas M, Badway F, Amatucci G G, et al. Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A179-A183.[4] Kim H, Seo D H, Kim H, et al. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(4): 720-725.[5] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li[J]. Journal of the Electrochemical Society, 2002, 149(9): A1212-A1217.[6] Shu J, Shui M, Huang F T, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3323-3328.[7] Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(16): 4522-4524.[8] Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoride nanocomposites structure and electrochemistry of FeF3 :C[J]. Journal of The Electrochemical Society, 2003, 150(9): A1209-A1218.[9] Li T, Li L, Cao Y L, et al. Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3190-3195.[10] Liu P, Vajo J J, Wang J S, et al. Thermodynamics and kinetics of the Li/FeF3 reaction by electrochemical analysis[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6467?6473.[11] Liu L, Zhou M, Wang X Y, et al. Synthesis and electrochemical performance of spherical FeF3/ACMB composite as cathode material for lithium-ion batteries[J]. Journal of Materials Science, 2012, 47(4): 1819-1824.[12] Mansour A N, Badway F, Yoon W S, et al. In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2-MoO3 nanocomposite[J]. Journal of Solid State Chemistry, 2010, 183(12): 3029-3038.[13] Cui Y H, Xue M Z, Zhou Y N, et al. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium[J]. Electrochimica Acta, 2011, 56(5): 2328-2335.[14] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials, 2007, 19(17): 4129-4141.[15] Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. Journal of Materials Science, 2009, 19(17): 2526-2552.[16] Kumagai N, Kumagai N, Tanno K. Electrochemical characteristics and structural changes of molybdenum trioxide hydrates as cathode materials for lithium batteries[J]. Journal of Applied Electrochemistry, 1988, 18(6): 857-862.[17] Jean-Marcel A, Joze M, Stane P, et al. On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(11): A1218-A1228.[18] Yamakawa N, Jiang M, Grey C P, et al. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR Spectroscopy and X-ray Diffraction[J]. Chemistry of Materials, 2009, 21(14): 3162-3176.[19] Sze S M. Physics of semiconductor devices[M]. 2nd ed. New Jersey: Wiley, 1981.[20] Shi Y L, Shen M F, Xu S D, et al. Electrochemical impedance spectroscopic study of the electronic and ionic transport properties of NiF2/C composites[J]. International Journal of Electrochemical Science, 2011, 6(8): 3399-3415[21] Ostrovskii D, Ronci F, Scrosati B, et al. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: Spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. Journal of Power Sources, 2001, 103(1): 10-17.[22] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons[J]. Journal of the Electrochemical Society, 2000, 147(1): 50-58.[23] Gmitter A J, Badway F, Rangan S, et al. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites[J]. Journal of Materials Science, 2010, 20(20): 4149-4161.[24] Hu J, Li H, Huang X J. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(1): A66-A69.[25] Hu J, Li H, Huang X J, et al. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries[J]. Solid State Ionics, 2006, 177(26/32): 2791-2799.[26] Wang F, Robert R, Chernova N A, et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes[J]. Journal of the American Chemical Society, 2011, 133(46):18828-18836. |