[1] |
Wang H Y, Wang L, Ren J T, Tian W, Sun M, Feng Y, Yuan Z Y. Taking advantage of potential coincidence region: advanced self-activated/propelled hydrazine-assisted alkaline seawater electrolysis and Zn-hydrazine battery[J]. ACS Nano, 2023, 17(11): 10965-10975. https://doi.org/10.1021/acsnano.3c03095.
|
[2] |
Tang Q J, Bai L, Zhang C, Meng R W, Wang L, Geng C N, Guo Y, Wang F F, Liu Y X, Song G S, Ling G W, Sun H T, Weng Z, Yang Q H. Molecular catalysts with electronic axial stretching for high-performance lean-oxygen seawater batteries[J]. Sci. Bull., 2023, 68(24): 3172-3180. https://doi.org/10.1016/j.scib.2023.09.049.
doi: 10.1016/j.scib.2023.09.049
URL
pmid: 37839915
|
[3] |
Zhan Y, Ding Z B, He F Lv X, Wu W F, Lei B, Liu Y, Yan X. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte[J]. Chem. Eng. J., 2022, 443: 136456. https://doi.org/10.1016/j.cej.2022.136456.
|
[4] |
Rao P, Liu Y R, Shi X D, Yu Y H, Zhou Y, Li R S, Liang Y, Wu D X, Li J, Tian X L, Miao Z P. Protection of fe single-atoms by fe clusters for chlorine-resistant oxygen reduction reaction[J]. Adv. Funct. Mater., 2024, 34: 2407121. https://doi.org/10.1002/adfm.202407121.
|
[5] |
Chen X Q, Zheng X R, Yin Z X, Lu J D, Wang Y, Guo Y Y, Zhang J F, Wang H Z, Zhao Z W, Wu Y Q, Deng Y D. Pre-adsorption of chlorine enhances the oxyphilic property and oxygen reduction activity of Fe/Se-NC electrocatalyst in seawater electrolyte[J]. Chem. Eng. J., 2024, 482: 148856. https://doi.org/10.1016/j.cej.2024.148856.
|
[6] |
Wu S Q, Liu X B, Mao H M, Cui T, Li B, Zhou G Z, Wang L. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich hierarchical heterogeneous assemblies[J]. Appl. Catal. B: Environ., 2023, 330: 122634. https://doi.org/10.1016/j.apcatb.2023.122634.
|
[7] |
Wang J Q, Tran D T, Chang K, Prabhakaran S, Zhao J, Kim D H, Kim N H, Lee J H. Hierarchical Ni@CNTs-bridged MoxC/Ni2P heterostructure micro-pillars for enhanced seawater splitting and Mg/seawater battery[J]. Nano Energy, 2023, 111: 108440. https://doi.org/10.1016/j.nanoen.2023.108440.
|
[8] |
Wu S Q, Liu X B, Mao H M, Zhu J W, Zhou G Z, Chi J Q, Wu Z X, Wang L. Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater[J]. Adv. Energy Mater., 2024, 14 (24): 2400183. https://doi.org/10.1002/aenm.202400183.
|
[9] |
Lu J D, Lu Q, Guo Y, Chen X Q, Yin Z X, Cao Y H, Guo Y Y, Zhang J F, Wang H Z, Wang Y, Zheng X R, Ozoemena K I, Deng Y D. Cobalt atom-cluster interactions synergistically enhance the activity of oxygen reduction reaction in seawater[J]. Energy Storage Mater., 2024, 65: 103093. https://doi.org/10.1016/j.ensm.2023.103093.
|
[10] |
Wang A S, Gao S, Yan J G, Zhao C N, Yu M, Wang W C. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery[J]. J. Energy Chem., 2023, 81: 533-542. https://doi.org/10.1016/j.jechem.2023.02.029.
|
[11] |
Zeng Y C, Li C Z, Li B Y, Liang J S, Zachman M J, Cullen D A, Hermann R P, Alp E E, Lavina B, Karakalos S, Lucero M, Zhang B Z, Wang M Y, Feng Z X, Wang G F, Xie J, Myers D J, Dodelet J P, Wu G. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe-N-C oxygen reduction fuel cell catalysts[J]. Nat. Catal., 2023, 6: 1215-1227. https://doi.org/10.1038/s41929-023-01062-8.
|
[12] |
Xie F X, Cui X L, Zhi X, Yao D Z, Johannessen B, Lin T, Tang J N, Woodfield T B F, Gu L, Qiao S Z. A general approach to 3D-printed single-atom catalysts[J]. Nature Synth., 2023, 2: 129-139. https://doi.org/10.1038/s44160-022-00193-3.
|
[13] |
Tian H, Song A L, Zhang P, Sun K A, Wang J J, Sun B, Fan Q H, Shao G J, Chen C, Liu H, Li Y D, Wang G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023, 35: e2210714. https://doi.org/10.1002/adma.202210714.
|
[14] |
Wei X Q, Song S J, Cai W W, Luo X, Jiao L, Fang Q, Wang X S, Wu N N, Luo Z, Wang H J, Zhu Z H, Li J, Zheng L R, Gu W L, Song W Y, Guo S J, Zhu C Z. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway[J]. Chem, 2023, 9(1):181-197. https://doi.org/10.1016/j.chempr.2022.10.001.
|
[15] |
Liu S G, Li Z J, Chang Y X, Kim M G, Jang H, Cho J, Hou L Q, Liu X. Substantial impact of built-in electric field and electrode potential on the alkaline hydrogen evolution reaction of Ru-CoP urchin arrays[J]. Angew. Chem. Int. Ed., 2024, 63(12): e202400069. https://doi.org/10.1002/anie.202400069.
|
[16] |
Xu Y M, Mao Z X, Zhang J F, Ji J P, Zou Y, Dong M Y, Fu B, Hu M Q, Zhang K D, Chen Z Y, Chen S, Yin H J, Liu P R, Zhao H J. Strain-modulated Ru-O covalency in Ru-Sn oxide enabling efficient and stable water oxidation in acidic solution[J]. Angew. Chem., Int. Ed., 2024, 63(8): e202316029. https://doi.org/10.1002/ange.202316029.
|
[17] |
Zhao X, Feng Q G, Liu M J, Wang Y C, Liu W, Deng D N, Jiang J B, Zheng X R, Zhan L S, Wang J X, Zheng H R, Bai Y, Chen Y B, Xiong X, Lei Y P. Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window[J]. ACS Nano, 2024, 18(13): 9678-9687. https://doi.org/10.1021/acsnano.4c01190.
|
[18] |
Tong K C, Xu L L, Yao H X, Wang X K, Zhang C H, Yang F, Chu L, Lee J, Jiang H Q, Huang M H. Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density[J]. Nano Res., 2024, 17(6): 5050-5060. https://doi.org/10.1007/s12274-024-6520-x.
|
[19] |
Chen W X, Wei W, Li F, Wang Y J, Liu M, Dong S, Cui J H, Zhang Y Y, Wang R, Ostrikov K, Zang S Q. Tunable built-in electric field in Ru nanoclusters-based electrocatalyst boosts water splitting and simulated seawater electrolysis[J]. Adv. Funct. Mater., 2024, 34(7): 310690. https://doi.org/10.1002/adfm.202310690.
|
[20] |
Yang H Q, Wang B D, Kou S Q, Lu G L, Liu Z N. Mott-Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery[J]. Chem. Eng. J., 2021, 425: 131589. https://doi.org/10.1016/j.cej.2021.131589.
|
[21] |
Lin Y Y, Liu K, Chen K J, Xu Y, Li H M, Hu J H, Lu Y R, Chan T S, Qiu X Q, Fu J W, Liu M. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction[J]. ACS Catal., 2021, 11(10): 6304-6315. https://doi.org/10.1021/acscatal.0c04966.
|
[22] |
Rao P, Han X Q, Sun H C, Wang F Y, Liang Y, Li J, Wu D X, Shi X D, Kang Z Y, Miao Z P, Deng P L, Tian X L. Precise synthesis of dual-single-atom electrocatalysts through pre-coordination-directed in situ confinement for CO2 reduction[J]. Angew. Chem. Int. Ed., 2025, 64(3): e202415223. https://doi.org/10.1002/ange.202415223.
|
[23] |
Zhang Y X, Zhang S B, Huang H L, Liu X L, Li B B, Lee Y Y, Wang X D, Bai Y, Sun M Z, Wu Y F, Gong S Y, Liu X W, Zhuang Z B, Tan T, Niu Z Q. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach[J]. J. Am. Chem. Soc., 2023, 145(8): 4819-4827. https://doi.org/10.1021/jacs.2c13886.
|
[24] |
Zhu P, Xiong X, Wang D S, Li Y D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis[J]. Adv. Energy Mater., 2023, 13(39): 2300884. https://doi.org/10.1002/aenm.202300884.
|
[25] |
Rao P, Deng Y J, Fan W J, Luo J M, Deng P L, Li J, Shen Y J, Tian X L. Movable type printing method to synthesize high-entropy single-atom catalysts[J]. Nat. Commun., 2022, 13: 5071. https://doi.org/10.1038/s41467-022-32850-8.
doi: 10.1038/s41467-022-32850-8
URL
pmid: 36038594
|
[26] |
Rao P, Wu D X, Wang T J, Li J, Deng P L, Chen Q, Shen Y J, Chen Y, Tian X L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2(4): 399-404. https://doi.org/10.1016/j.esci.2022.05.004.
|
[27] |
Zhang H, Chen H C, Feizpoor S, Li L, Zhang X Y, Xu X M, Zhuang Z B, Li Z, Hu W L, Snyders R, Wang D, Wang C. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries[J]. Adv. Mater., 2024, 36(25): 2400523. https://doi.org/10.1002/adma.202400523.
|
[28] |
Yu Y H, Rao P, Feng S Y, Chen M, Deng P L, Li J, Miao Z P, Kang Z Y, Shen Y J, Tian X L. Atomic coclusters for efficient oxygen reduction reaction[J]. Acta Phys. Chim. Sin., 2023, 39(8): 2210039. https://doi.org/10.3866/PKU.WHXB202210039.
|
[29] |
Zhao X, Liu M J, Wang Y C, Xiong Y, Yang P Y, Qin J Q, Xiong X, Lei Y P. Designing a built-in electric field for efficient energy electrocatalysis[J]. ACS Nano, 2022, 16(12): 19959-19979. https://doi.org/10.1021/acsnano.2c09888.
doi: 10.1021/acsnano.2c09888
URL
pmid: 36519975
|
[30] |
Chen D, Lu R H, Yu R H, Dai Y H, Zhao H Y, Wu D L, Wang P Y, Zhu J W, Pu Z H, Chen L, Yu J, Mu S C. Work-function-induced interfacial built-in electric fields in os-osse2 heterostructures for active acidic and alkaline hydrogen evolution[J]. Angew. Chem. Int. Ed., 2022, 61(36): e202208642. https://doi.org/10.1002/anie.202208642.
|
[31] |
Liu Y R, Feng S Y, Shan L T, Zhu Y S, Zhou C C, Li J, Shi X D, Kang Z Y, Tian X L, Rao P. Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries[J]. Adv. Funct. Mater., 2025, 35(26): 202422874. https://doi.org/10.1002/adfm.202422874.
|