[1] |
Pendashteh A, Tomey R, Vilatela J. Nanotextile 100% Si anodes for the next generation energy-dense Li-ion batteries[J]. Adv. Energy Mater., 2024, 14(16): 2304018.
|
[2] |
Lu B, Ma B J, Deng X L, Li W W, Wu Z Y, Shu H B, Wang X Y. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery[J]. ACS Appl. Mater. Interfaces, 2017, 9(38): 32829-32839.
|
[3] |
Xu G L, Xiao L, Sheng T, Liu J, Hu Y X, Ma T, Amine R, Xie Y, Zhang X, Liu, Y. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid[J]. Nano Lett., 2018, 18(1): 336-346.
|
[4] |
Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv. Energy Mater., 2017, 7(1): 1601507.
|
[5] |
Meng B C, Yu J, Peng J X, Wei Y B, Zhu F, Chen T X, Yang N X, Chuan X, Li L B. Combine natural stibnite with bio-carbon: A high-capacity composite anode material for lithium-ion battery[J]. JOM, 2023, 75(7): 2626-2635.
|
[6] |
Ma Y, Zheng Y, Xu M, Huang S, Yuan G H. One-step binding and wrapping fragmented natural microcrystalline graphite via phenolic resin into secondary particles for high-performance lithium-ion battery anode[J]. JOM, 2023, 75(12): 5321-5330.
|
[7] |
Xia X, Qian X Y, Chen C, Li W Y, He D F, He G Y, Chen H Q. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. J. Energy Storage, 2023, 72: 108715.
|
[8] |
Liu Y B, Liu X Y, Zhu Y L, Wang J W, Ji W W, Liu X Z. Scalable synthesis of pitch-coated nanoporous Si/graphite composite anodes for lithium-ion batteries[J]. Energy Fuels, 2023, 37(6): 4624-4631.
|
[9] |
Li Y F, Li Q M, Chai J L, Wang Y T, Du J K, Chen Z Y, Rui Y C, Jiang L, Tang B H J. Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress[J]. ACS Mater. Lett., 2023, 5(11): 2948-2970.
|
[10] |
Ming H, Qiu J Y, Zhang S T, Li M, Zhu X Y, Wang L M, Ming J. Constructing dense SiOx@carbon nanotubes versus spinel cathode for advanced high-energy lithium-ion batteries[J]. ChemElectroChem, 2017, 4(5): 1165-1171.
|
[11] |
Liu Q, Cui Z, Zou R J, Zhang J H, Xu K B, Hu J Q. Surface coating constraint induced anisotropic swelling of silicon in Si-void@SiOx nanowire anode for lithium-ion batteries[J]. Small, 2017, 13(13): 1603754.
|
[12] |
Fu R S, Zhang K L, Zaccaria R P, Huang H R, Xia Y G, Liu Z P. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries[J]. Nano Energy, 2017, 39: 546-553.
|
[13] |
Chen P H, Wu H, Huang S S, Zhang Y. Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials[J]. Ceram. Int., 2016, 42(8): 10498-10505.
|
[14] |
Wu G L, Jia Z R, Cheng Y H, Zhang H X, Zhou X F, Wu H J. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries[J]. Appl. Surf. Sci., 2019, 464: 472-478.
|
[15] |
Liu Y, Haridas A. K., Lee Y., Cho K K, Ahn J H. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Appl. Surf. Sci., 2019, 472: 135-142.
|
[16] |
Ma T Y, Yu X N, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Lett., 2017, 17(6): 3959-3964.
|
[17] |
Zhou Z W, Liu Y T, Xie X M, Ye X Y. Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage[J]. Appl. Surf. Sci., 2016, 8(11): 7092-7100.
|
[18] |
Lei Y, Li S, Du M, Mi J, Gao D C, Hao L, Jiang L J, Luo M, Jiang W Q, Li F, Wang S H. Preparation of double-shell Si@SnO2@C nanocomposite as anode for lithium-ion batteries by hydrothermal method[J]. Rare Met., 2023, 42(9): 2972-2981.
|
[19] |
Ji X L, Lee K T, Monjauze M, Nazar L F. Strategic synthesis of SBA-15 nanorods[J]. Chem. Commun., 2008, 36: 4288-4290.
|
[20] |
Zhang N, Zhao Q, Han X P, Yang J G, Chen J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries[J]. Nanoscale, 2014, 6(5): 2827-2832.
doi: 10.1039/c3nr05523j
pmid: 24468961
|
[21] |
Ren D Z, Huang H, Qi J G, Zheng P. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technol., 2020, 8(7): 2000314.
|
[22] |
Liu Y H, Xu Y H, Zhu Y J, Culver J N, Lundgren C A, Xu K, Wang C S. Tin-coated viral nanoforests as sodium-ion battery anodes[J]. ACS Nano, 2013, 7(4): 3627-3634.
doi: 10.1021/nn400601y
pmid: 23484633
|
[23] |
Chang P, Liu X X, Zhao Q J, Huang Y Q, Huang Y H, Hu X L. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(37): 31879-31886.
|
[24] |
Murugesan S, Harris J T, Korgel B A, Stevenson K J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chem. Mater., 2012, 24(7): 1306-1315.
|
[25] |
Zheng P, Liu T, Guo S W. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries[J]. Sci. Rep., 2016, 6: 35620.
doi: 10.1038/srep35620
pmid: 27752146
|
[26] |
Zheng P, Liu T, Yuan X Y, Zhang L F, Liu Y, Huang J F, Guo S W. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode[J]. Sci. Rep., 2016, 6: 26246.
doi: 10.1038/srep26246
pmid: 27189794
|
[27] |
Michelson A, Zhang H H, Xiang S T, Gang O. Engineered silicon carbide three-dimensional frameworks through DNA-prescribed assembly[J]. Nano Lett., 2021, 21(4): 1863-1870.
doi: 10.1021/acs.nanolett.0c05023
pmid: 33576631
|
[28] |
Ren Y R, Li M Q. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance[J]. J. Power Sources, 2016, 306: 459-466.
|
[29] |
Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlögl R, Antonietti M, Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew. Chem., Int. Ed., 2008, 47(9): 1645-1649.
|
[30] |
Zheng P, Su J X, Wang Y B, Zhou W, Song J J, Su Q M, Reeves-McLaren N, Guo S W. A high-performance primary nanosheet heterojunction cathode composed of Na0.44MnO2 tunnels and layered Na2Mn3O7 for Na-ion batteries[J]. ChemSusChem, 2020, 13(7): 1793-1799.
doi: 10.1002/cssc.201903543
pmid: 31994308
|
[31] |
Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L, Mai L Q. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48(1): 285-309.
doi: 10.1039/c8cs00441b
pmid: 30457132
|