电化学(中英文) ›› 2025, Vol. 31 ›› Issue (2): 2407061. doi: 10.61558/2993-074X.3489
收稿日期:
2024-07-06
修回日期:
2024-07-31
接受日期:
2024-07-31
出版日期:
2025-02-28
发布日期:
2024-08-21
Hai-Ji Xiong, Cheng-Wei Zhu, Ding-Rong Deng*(), Qi-Hui Wu*(
)
Received:
2024-07-06
Revised:
2024-07-31
Accepted:
2024-07-31
Published:
2025-02-28
Online:
2024-08-21
Contact:
*Ding-Rong Deng, drdeng@jmu.edu.cn;Qi-Hui Wu, qihui.wu@jmu.edu.cn
摘要:
由于锂硫电池高理论能量密度(2600 Wh·kg-1)和比容量(1675 mAh·g-1),被认为是集成可再生能源系统用于大规模能量存储的潜在解决方案之一。但由于“穿梭效应”、容量衰减和体积变化等障碍阻碍了锂硫电池的成功商业化。现阶段已提出各种策略以克服技术障碍,本文综述了不同金属氮化物作为高性能锂硫电池阴极宿主材料的应用,总结了不同宿主材料的设计策略,讨论了金属氮化物性质与其电化学性能之间的关系,最后,提出了对金属氮化物设计和发展的合理建议,以及促进未来突破的想法。我们希望本文能够引起更多关于金属氮化物及其衍生物的关注,并进一步促进锂硫电池的电化学性能。
熊海基, 朱成威, 邓丁榕, 吴启辉. 金属氮化物作为锂硫电池阴极硫骨架材料的研究[J]. 电化学(中英文), 2025, 31(2): 2407061.
Hai-Ji Xiong, Cheng-Wei Zhu, Ding-Rong Deng, Qi-Hui Wu. Metal Nitrides as Cathode Hosts for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2025, 31(2): 2407061.
Polar host material | Synthesis method | Morphology | Sulfur loading& (sulfur content in cathode by weight) [mg·cm-2] & [%] | Voltage window (vs. Li+) [V] | Electrochemical performance (initial capacity {mAh·g-1} and cycles) &decay Rate claimed (per cycle) | Sulfur infiltration method | Ref. |
---|---|---|---|---|---|---|---|
TiN | Solid-solid phase separation method | Mesoporous sphere | 0.6816 | 1.6-2.8 | 988(65.2% after 500 cycle) at C/2 & (N/A) | Melt-diffusion | [ |
TiN-VN@CNFs | electrospinning method | Multichannel structure of the fibers | 5.6 | 1.7-2.8 | 1388 at C/10(1110 after 100 cycles at C/5) & 0.051% at 1 C | Melt-diffusion | [ |
CNTs@TiN-TiO2 | atomic layer depositi-on | Deposition of TiN layer on the CNT surface | 15 | 1.5-3 | 1431(1330 after 350 cycles) at C/5 & 0.0056% at 1 C, 0.031% at 2 C | Li2S6 and electrolyte (lithium/dissolved polysulfide systems) | [ |
TiN | Hydrothermal method | Hollow and porous nanostructure | 70 wt% | 1.7-2.7 | 692 at 5 C (740 after 400 cycles at 1 C) & 0.006% at 1 C | Melt-diffusion | [ |
TiN | Hydrothermal and calcined | Hollow porous tubes | 73.8 wt% | 1.7-2.7 | 1026 at C/5(above 840 after 450 cycles at C/2) | Melt-diffusion | [ |
CNT@TiN | Mild solvothermal method and a nitriding process | Nanoparticles | 1 | N/A | 1175(734 after 100 cycles) at C/5 & 0.19% | Melt-diffusion | [ |
TMN | Taku-san chemical synthesis method | 2D arrays of few-nanometer nanocrystals | 5.1 | N/A | 912.8(796.5% after 1000 cycles at 1 C) & 0.013% | Melt-diffusion | [ |
TiN | Heating method | Nanostructures | 7 | 1.5-3 | 1524(358 after 100 cycles) at C/10 & N/A | S8 Li2S and electrolyte | [ |
TiN | Hydrothermal and Heating method | Hollow TiN microspheres | 60 wt% | 1.8-2.8 | 1218(623.3 after 300 cycles) & N/A | Melt-diffusion | [ |
VN | Hydrothermal method | Pea shape nanoparticles, | 8 | 1.5-3 | 573(N/A) | Lithium/dissolved polysulfide systems | [ |
VN/G | Hydrothermal and annealing method | 3D interconnected network | 3&(N/A) | 1.7-2.8 | 1471(above 99.5% after 100 cycle) at C/2 & 0.15% | Li2S6 and electrolyte (lithium/dissolved polysulfide systems) | [ |
VN | Hydrothermal and facile nitridation treatment | Aerogel nanowires | 4 & (40 wt%) | 1.8-2.8 | 1121(836 after 400 cycles) & 0.06% | Melt-diffusion | [ |
VN | molten salt template method | Porous structure | 70 wt% | 1.7-2.8 | 1050(75% after 100 cycles) at C/5 & 0.059% | Melt-diffusion | [ |
VN | calcination, washing and polyaniline-coating | Porous rod-like structure | 70 wt% | 1.6-2.8 | 1007(735 after 150 cycles) at 0.5 A/g & N/A | Melt-diffusion | [ |
p-Fe2N/n-VN PNCF | soft template and electrospinning technology | Heterostructure | 6.5(71 wt%) | N/A | 1358.2(93% after 300 cycles) at C/10 & N/A | Melt-diffusion | [ |
VN/M/NC | molten salt Template method | Small and uniformly dispersed VN particles | 70 wt% | 1.7-2.8 | 798(81.5% after 500 cycles) at 1C & 0.036% | Melt-diffusion | [ |
MVN@C NWs | Hydrothermal AND nitridation | Mesopores structure | 2.7(57.2 wt%) | 1.6-3 | 1040 at 1 C (735 after 200 cycles at 2 C) & N/A | Soaking with S/CS2 and Melt-diffusion | [ |
MOF-Co4N | facile solvent method | 2D nitrogen-doped carbon structure | 1(N/A) | 1.7-2.8 | 1425(≈82.5 after 400 cycle) at 1 C & (N/A) | Li2S6 and electrolyte (lithium/dissolved polysulfide systems) | [ |
Co4N | Hydrothermal method | Mesoporous sphere | 72.3 wt% | 1.7-2.7 | 1659(above 94% after 100 cycle) at C/2 & 0.01% | Melt-diffusion | [ |
CuCoN0.6/NC | electrospinning and nitridation method | Necklace-like | 2.72 | 1.7-2.8 | 1218(85.2% after 100 cycles) at C/10 & 0.076% | Li2S6 and electrolyte (lithium/dissolved polysulfide systems) | [ |
Mo2N | soft templating approach | Mesoporous sphere | 1.1 | 1.7-2.8 | 995(91.9% after 100 cycle) at C/2 &0.081% | Melt-diffusion | [ |
MoN | one-pot ammoniation strategy | 3D network structure | 3.1 | 1.7-2.8 | 1315(990 after 350 cycles) at 1 C & 0.062% | Melt-diffusion and annealing | [ |
MoN@CMK-5 | Hydrothermal method | bimodal pore system | 70 wt% | 1.7-2.8 | 1582 at 0.1 C (475.8 after 1000 cycles) at 5 C & 0.027% | Melt-diffusion | [ |
WN | Hydrothermal method | Face-centered cubic (fcc) structure | 8 | 1.5-3 | 697(700 after 100 cycles) | Lithium/dissolved polysulfide systems | [ |
Mo2N | Hydrothermal method | Mesoporous nano rod shaped porous | 8 | 1.5-3 | 264(N/A) | Lithium/dissolved polysulfide systems | [ |
WN | self-templating hydrothermal reaction | 3D porous hierarchical WN nanobolcks | 0.92(52 wt%) | 1.7-2.8 | N/A (358 after 500 cycles at 2 C) | Melt-diffusion | [ |
AlN@NCNs | Heating, drying, washing, precipitation, drying | Crossinked thin nanosheets | 70.7 wt% | 1.6-2.8 | 1297 (459.1 after 300 cycles) at 0.2 A/g & N/A | Melt-diffusion | [ |
[1] | Guo Y, Niu Q, Pei F, Wang Q, Zhang Y, Du L Y, Zhang Y, Zhang Y S, Zhang Y Y, Fan L, Zhang Q Y, Yuan L X, Huang Y X. Interface engineering toward stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2024, 17(4): 1330-1367. |
[2] | Deng D R, Cui X Y, Wu Q H, Zheng M S, Dong Q F. In-situ synthesis TiO2 nanosheets@rGO for ultrafast sodium ion storage at both room and low temperatures[J]. J. Alloys Compd., 2020, 835: 155413. |
[3] | Xiong H J, Luo Y L, Deng D R, Zhu C W, Song J X, Weng J C, Wu Q H, Fan X H, Li G F, Zeng Y, Li Y. In-situ synthesis Fe3C@C/rGO as matrix for high performance lithium-sulfur batteries at room and low temperatures[J]. J Colloid Interface Sci., 2024, 668: 448-458. |
[4] | You Y, Zhang F J, Yu H Z, Li Q, Liu Q Z. Fe2O3-Decorated hollow CNT as efficient cathode coatings for high-performance lithium-sulfur batteries[J]. Mater. Today Commun., 2024, 38: 108479. |
[5] | Song Y W, Shen L, Yao N, Feng S, Cheng Q, Ma J, Zhang Q, Chen X, Li B Q. Anion-involved solvation structure of lithium polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2024, 63(19): e202400343. |
[6] | Salehi H, Maroufi S, Mofarah S S, Nekouei R K, Sahajwalla V. Recovery of rare earth metals from Ni-MH batteries: A comprehensive review[J]. Renew. Sust. Energ. Rev., 2023, 178: 113248. |
[7] | Menz F, Bauer M, Böse O, Pausch M, Danzer M A. Investigating the thermal runaway behaviour of fresh and aged large prismatic lithium-ion cells in overtemperature experiments[J]. Batteries, 2023, 9(3): 159-159. |
[8] | Deng D R, Xiong H J, Luo Y L, Yu K M, Weng J C, Li G F, Wu Q H, Lei J, Zheng M S. Accelerating the rate determining steps of sulfur conversion reaction for lithium-sulfur batteries working at an ultrawide temperature range[J]. Adv. Mater., 2024, 36(39): 2406135. |
[9] | Li X, Huang J Q, Zhang Q, Mai Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J] Adv. Mater., 2017, 29(20): 1601759. |
[10] | Wild M, O'neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G J. Lithium sulfur batteries, a mechanistic review[J]. Energy Environ. Sci., 2015, 8(12): 3477-3494. |
[11] |
Gicha B B, Tufa L T, Nwaji N, Hu X, Lee J. Advances in all-solid-state lithium-sulfur batteries for commercialization[J]. Nano-micro Lett., 2024, 16(1): 172.
doi: 10.1007/s40820-024-01385-6 pmid: 38619762 |
[12] | Zheng S, Khan N, Worku B E, Wang B. Review and prospect on low-temperature lithium-sulfur battery[J]. Chem. Eng., 2024, 484: 149610. |
[13] | Liu Y, Wu F, Hu Z, Zhang F, Wang K, Li L, Chen R. Regulating sulfur redox kinetics by coupling photocatalysis for high-performance photo assisted lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2024, 63(25): e202402624. |
[14] | Deng D R, Wu Q H, Li Y. Electronic structure of graphene/MoO3/CuPc interfaces[J]. Mater. Res. Express., 2019, 6(12): 126315. |
[15] | Song Y Z, Song L X, Wang M L, Cai W L. Chemical vapor deposition making better lithium-sulfur batteries[J]. Sci. Bull., 2024, 16: S2095-9273. |
[16] | Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur battreies[J]. Nat. Mater., 2009, 8(6): 500-506. |
[17] | Jayaprakash N, Shen J, Moganty S S. Porous hollow cabon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2011, 123(26): 6026-6030. |
[18] | Guo J, Xu Y, Wang C. Sulfur-impregnated disordered cabon nanotubes cathode for lithium-sulfur batteries[J]. Nano Lett., 2011, 11(10): 4288-4294. |
[19] | Sadd M, De Angelis S, Colding-Jorgensen S. Visualization of dissolution-precipitation procresses in lithium-sulfur batteries[J]. Adv. Energy Mater., 2022, 12(10): 2103126. |
[20] | Zhu K P, Li L H, Xue P, Pu J, Wu L Y, Guo G D, Wang R, Zhang Y, Peng H S, Hong G, Zhang Q, Yao Y G. “Three-in-one” strategy: Heat regulation and conversion enhancement of a multifunctional separator for safer lithium-sulfur batteries[J]. Carbon Energy, 2023, 5(11): e352. |
[21] | Wang D W, Zeng Q, Zhou G. Cabon-sulfur composites for Li-S batteries: status and prospects[J]. J. Mater. Chem. A, 2013, 1(33): 9382-9394. |
[22] |
Fei B, Zhang C, Cai D. Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium-sulfur batteries[J]. ACS nano, 2021, 15(4): 6849-6860.
doi: 10.1021/acsnano.0c10603 pmid: 33769793 |
[23] | Hu X C, Zhu X S, Ran Z S, Liu S H, Zhang Y Y, Wang H, Wei W. Conductive polymer-based interlayers in restraining the polysulfide shuttle of lithium-sulfur batteries[J]. Molecules, 2024, 29(5): 1164. |
[24] | Fei Y, Li G. Unveiling the pivotal parameters for advancing high energy density in lithium-sulfur batteries: a comprehensive review[J]. Adv. Funct. Mater., 2024, 34(21): 2312550. |
[25] | Song Z H, Jiang W Y, Li B R, Qu Y P, Mao R Y, Jian X G, Hu F Y. Advanced polymers in cathodes and electrolytes for lithium-sulfur batteries: progress and prospects[J]. Small, 2024, 20(19): 2308550. |
[26] | Chen J J, Fu Y Q, Guo J C. Development of electrolytes under lean condition in lithium-sulfur batteries[J]. Adv. Mater., 2024, 36(29): 2401263. |
[27] |
Deng D R, Xue F, Bai C D, Lei J, Yuan R M, Sen Zheng M, Dong Q F. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range[J]. ACS Nano, 2018, 12(11): 11120-11129.
doi: 10.1021/acsnano.8b05534 pmid: 30359514 |
[28] | Deng D R, Cui X Y, Fan X X, Zheng J Q, Fan X H, Wu Q H, Zheng M S, Dong Q F. Integration of adsorption and catalytic active sites in cobalt iron oxide nanorods for an excellent performance Li-S battery with a wide temperature range[J]. Sustain. Energy. Fuels., 2021, 5(17): 4284-4288. |
[29] | Borchardt L, Oschatz M, Kaskel S. Carbon materials for lithium sulfur batteries-ten critical questions[J]. Chem. Eur. J., 2016, 22(22): 7324-7351. |
[30] | Dasarathan S, Sung J H, Ali M, Lee Y J, Choi H Y, Park J W, Kim D. Effect of phosphorus-modified TiN mesoporous MXene interlayer as a polysulfide electrocatalyst in Li-S battery[J]. Electrochem. Commun., 2024, 160: 107679. |
[31] | Yin R J, Wan L, Xue H T, Wei C D, Liu M W, Zhao W, Tang F L. First-principles study of the catalytic performance of sulfur cathode host Co3Mo3N[J]. Comput. Mater. Sci., 2024, 238: 112946. |
[32] | Lu S, Cai L C, Wang J Q, Ying H J, Han Z K, Han W Q, Chen Z P. 2D ultrathin titanium nitride nanosheets as separator coatings for Li-S batteries[J]. Small, 2024, 20(27): 2307784. |
[33] | Liu R Q, He L L, Liu Y R, Wu J Y, Zhu W F, Xie K, Liu W X, Lin X J, Shi L, Wang S, Feng X M, Ma Y W. Multistep C/VN frameworks as highly-efficient sulfur host for high-performance lithium-sulfur batteries[J]. Mater. Chem. Phys., 2024, 315: 129045. |
[34] | Liu J T, Yu L H, Ran Q W, Chen X A, Wang X Y, He X D, Jin H L, Chen T, Chen J S, Guo D Y, Wang S. Regulating electron filling and orbital occupancy of anti-bonding states of transition metal nitride heterojunction for high areal capacity lithium-sulfur full batteries[J]. Small, 2024, 20(31): 2311750. |
[35] | Kadam S A, Jose L M, George N S, Sreehari S, Nayana D A, Van Pham D, Kadam K P, Aravind A, Ma Y R. Recent progress in transition metal nitride electrodes for supercapacitor, water splitting, and battery applications[J]. J. Alloys Compd., 2023, 976: 173083. |
[36] | Wang T, Dong Q, Wang F Z, Xu R, Tong C, Su D, Shao M H, Li C P, Wei Z D. Functionless cobalt toward functional cobalt nitride: Catalytic sulfur carrier for lithium-sulfur pouch batteries[J]. Matter., 2024, 7(3): P1035-1053. |
[37] | Jin L N, Chen J Y, Fu Z H, Qian X Y, Cheng J, Hao Q Y, Zhang K. ZIF-8/ZIF-67 derived ZnS@Co-NC hollow core-shell composite and its application in lithium‑sulfur battery[J]. SM&T, 2023, 35(6): e00571. |
[38] | Zhang P, Yue L L, Liang Q Y, Gao H, Yan Q, Wang L. a review of transition metal compounds as functional separators for lithium-sulfur batteries[J]. ChemistrySelect, 2023, 8(1): e202203352. |
[39] | Li J, Zhang X, Zhang Z Y, Li Y R, Zhu L L. Preparation of LDHs-derived Co-Ni3N heterostructure modified porous carbon nanofibers as advanced interlayers for lithium-sulfur batteries[J]. J. Alloys Compd., 2024, 971: 72731. |
[40] | Mori R. Cathode materials for lithium-sulfur battery: a review[J]. J. Solid State Electrochem., 2023, 27(4): 813-839. |
[41] | Zhang X D, Zhao M C, Cai D P, Zhang C Q, Chen Q D, Zhan H B. Separator modified by ternary iron molybdenum nitride and nitrogen-doped carbon composite enabling efficient polysulfide conversion for lithium-sulfur batteries[J]. J. Alloys Compd., 2023, 967: 171633. |
[42] | Han Z, Son S, Kim K, Geng M Z, Yang H Q. Manganese nitride/oxide heterostructure interlayer derived from triazolate metal-organic framework for stable Li-S batteries[J]. Chem. Eng. J., 2024, 481: 148389. |
[43] | Wang Y K, Zhang R F, Pang Y C, Chen X, Lang J X, Xu J J, Xiao C H, Li H L, Xi K, Ding S J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Stor. Mater., 2019, 16: 228-235. |
[44] |
Ma L B, Wang Y R, Wang Z W, Wang J L, Cheng Y W, Wu J X, Peng B, Xu J, Zhang W, Jin Z. Wide-temperature operation of lithium-sulfur batteries enabled by multi-branched vanadium nitride electrocatalyst[J]. ACS Nano., 2023, 17(12): 11527-11536.
doi: 10.1021/acsnano.3c01469 pmid: 37288710 |
[45] | Yang J, Li S Q, Wu G Z, Bao J W, Xu S, Gu C P, Lv J J, Huang J R, Joo S W. Preparation of polyaniline-coated cobalt nitride nanoflowers as sulfur host for advanced lithium-sulfur battery[J]. J. Alloys Compd., 2024, 981: 173701-173701. |
[46] | Deng D J, Zhang H H, Wu J C, Tang X, Ling M, Dong S H, Xu L, Li H A, Li H M. Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries[J]. J. Energy Chem., 2024, 89: 239-249. |
[47] | Sekiya T, Yamada T, Yamane H. Synthesis of faceted crystal grains of titanium nitride using titanium oxides, boron nitride, and sodium[J]. J. Chem. Soc. Japan, 2020, 128(7): 364-367. |
[48] | Xu W C, Pan X X, Meng X, Zhang Z H, Peng H R, Liu J, Li G C. A conductive sulfur-hosting material involving ultrafine vanadium nitride nanoparticles for high-performance lithium-sulfur battery[J]. Electrochim. Acta, 2020, 331: 135287-135287. |
[49] | Xie D, Wang X T, Wei L J, Zhang R, Ganesan R, Matthews D T A, Leng Y X. Atomic configuration, electronic structure, and work of adhesion of TiN (111)//B2-NiTi (110) and TiN (111)//B19′-NiTi (010) interfaces: Insights from first-principles simulations[J]. Surf. Interface Anal., 2023, 55(1): 41-51. |
[50] | Morales H M, Vieyra H, Sanchez D A, Fletes E M, Odlyzko M, Lodge T P, Padilla-Gainza V, Alcoutlabi M, Parsons J G. Synthesis and characterization of titanium nitride-carbon composites and their use in lithium-ion batteries[J]. Nanomaterials, 2024, 14(7): 624. |
[51] | Avasarala B, Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions[J]. Electrochim. Acta, 2010, 55(28): 9024-9034. |
[52] |
Lu X H, Wang G M, Zhai T, Yu M H, Xie S L, Ling Y C, Liang C L, Tong Y X, Li Y. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors[J]. Nano Lett., 2012, 12(10): 5376-5381.
doi: 10.1021/nl302761z pmid: 22947093 |
[53] | Cui Z M, Zu C X, Zhou W D, Manthiram A, Goodenough J B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Adv. Mater., 2016, 28(32): 6926-6931. |
[54] | Deng D R, An T H, Li Y J, Wu Q H, Zheng M S, Dong Q F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries[J]. J. Mater. Chem. A, 2016, 4(41): 16184-16190. |
[55] | Deng D R, Wu Q H. Hollow TiN microspheres synthesized by a template-free method as a matrix for high performance Li-S battery[J]. ChemistrySelect, 2020, 5(28): 8735-8739. |
[56] | Zhao J, Zhao Y Y, Yue W C, Li X, Gao N, Zhang Y J, Hu C Q. V2O3/VN catalysts decorated free-standing multifunctional interlayer for high-performance Li-S battery[J]. Chem. Eng. J., 2022, 441: 136082. |
[57] | Cai D P, Zhuang Y X, Fei B, Zhang C Q, Wang Y G, Chen Q D, Zhan H B. Self-supported VN arrays coupled with N-doped carbon nanotubes embedded with Co nanoparticles as a multifunctional sulfur host for lithium-sulfur batteries[J]. Chem. Eng. J., 2022, 430(P3): 132931. |
[58] | Wang L, Sun C Y, Ji S, Linkov V, Wang H. Highly-dispersed vanadium nitride supported on porous nitrogen-doped carbon material as a high-performance cathode for lithium-sulfur batteries[J]. ChemistrySelect, 2022, 7(45): e202202879. |
[59] | Sun C Y, Ji S, Ma X G, Wang H, Wang X Y, Linkov V, Wang R F. Using sp2 N atom anchoring effect to prepare ultrafine vanadium nitride particles on porous nitrogen-doped carbon as cathode for lithium-sulfur battery[J]. J. Colloid Interface Sci., 2022, 623: 306-317. |
[60] | Azouaoui A, Benzakour N, Hourmatallah A, Bouslykhane K. Study of structural, electronic, magnetic, elastic, and thermodynamic properties of Co4N antiperovskite by first principles and Monte Carlo simulation[J]. Phys. Status Solidi B, 2021, 258(2): 2000339. |
[61] | Jia H N, Fan J H, Su P, Guo T T, Liu M C. Cobalt nitride nanoparticles encapsulated in N-doped carbon nanotubes modified separator of Li-S battery achieving the synergistic effect of restriction adsorption catalysis of polysulfides[J]. Small, 2024, 20(26): 2311343. |
[62] | Xiao K K, Wang J, Chen Z, Qian Y H, Liu Z, Zhang L L, Chen X H, Liu J L, Fan X F, Shen Z X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries[J]. Small, 2019, 15(25): 1901454. |
[63] | Li Z Q, Li C X, Ge X L, Ma J Y, Zhang Z W, Li Q, Wang C X, Yin L W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium-sulfur batteries[J]. Nano Energy, 2016, 23: 15-26. |
[64] | Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS nano, 2017, 11(6): 6031-6039. |
[65] | Wang Z, Wang X, Tong Y G, Wang Y P. Impact of structure and flow-path on in situ synthesis of AlN: Dynamic microstructural evolution of Al-AlN-Si materials[J]. Sci. China Mater., 2018, 61(7): 948-960. |
[66] | Jackson N, Mathewson A. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene[J]. Smart Mater. Struct., 2017, 26(4): 045005. |
[67] | Hou X R, Li L, Wei S C, Li J D, Wu F C. Two-dimension Al2O3-AlN heterogeneous nanosheets as bifunctional host materials for kinetics-accelerated and dendrite-free lithium-sulfur batteries[J]. Electrochim. Acta, 2023, 464: 142887. |
[68] | Yang J, Wu G Z, Sun A J, Gu C P, Cao Y X, Joo S W, Huang J R. AlN nanoparticles anchored on cross-linked N-doped carbon nanosheets as sulfur hosts for lithium-sulfur battery[J]. J. Electroanal. Chem., 2023, 951: 117930. |
[69] | Abdelkader H S, Rabahi A, Benaissa M, Benabadji M K. Theoretical investigation of structural and mechanical stability of Mo2N[J]. Solid State Commun., 2020, 314-315: 113919. |
[70] | Yang J L, Cai D Q, Lin Q W, Wang X Y, Fang Z Q, Huang L, Wang Z J, Hao X G, Zhao S X, Li J, Cao G Z, Lv W. Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries[J]. Nano Energy, 2022, 91: 106669. |
[71] | Jiang G S, Xu F, Yang S H, Wu J P, Wei B Q, Wang H Q. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2018, 395: 77-84. |
[72] | Liu H D, Chen Z L, Man H, Yang S P, Song Y, Fang F, Chen R C, Sun D L. Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium-sulfur batteries[J]. J. Alloys Compd., 2020, 842: 155764. |
[73] |
Xing W D, Zhang Y, Meng F Y, Wang C C, Tao Q, Zhu P W, Zhu J, Yu R. Structure stabilization effect of configuration entropy in cubic WN[J]. Phys. Chem. Chem. Phys., 2018, 20(46): 29243-29248.
doi: 10.1039/c8cp05320k pmid: 30427344 |
[74] | Yan N F, Cui H M, You S Y, Shi J S, Weng Y Q, Liu Y W. Tungsten nitride nanotubes as sulfur host material for high performance Li-S batteries[J]. Inorg. Chem. Commun., 2022, 140: 109458. |
[75] | Liu H, Shen H, Li R, Liu S, Turak A, Yang M. Tungsten-nitride-coated carbon nanospheres as a sulfur host for high-performance lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(7): 2074-2079. |
[76] | Huang Z D, Fang Y W, Yang M T, Yang J K, Wang Y Z, Wu Z, Du Q C, Masese T, Liu R Q, Yang X S, Qian C H, Jin S W, Ma Y W. Sulfur in mesoporous tungsten nitride foam blocks: a rational lithium polysulfide confinement experimental design strategy augmented by theoretical predictions[J]. ACS Appl. Mater. Interfaces, 2019, 11(22): 20013-20021. |
[77] | Mosavati N, Salley S O, Ng K Y S. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries[J]. J. Power Sources, 2017, 340: 210-216. |
[78] |
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
doi: 10.1038/ncomms14627 pmid: 28256504 |
[79] | D R Deng, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017, 11(6): 6031-6039. |
[80] |
Zhang H, Ono L K, Tong G Q, Liu Y Q, Qi Y B. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nat. Commun., 2021, 12(1): 4738.
doi: 10.1038/s41467-021-24976-y pmid: 34362896 |
[81] | Liu Z H, Lian R Q, Wu Z R, Li Y J, Lai X Y, Yang S, Ma X, Wei Y J, Yan X. Ordered dual-channel carbon embedded with molybdenum nitride catalytically induced high-performance lithium-sulfur battery[J]. Chem. Eng. J., 2022, 431(P2): 134163-134163. |
[82] | Deng D R, Wu Q H. Hollow TiN microspheres synthesized by a template-free method as a matrix for high performance Li-S battery[J]. ChemistrySelect, 2020, 5(28): 8735-8739. |
[83] | Yao Y, Wang H Y, Yang H, Zeng S F, Xu R, Liu F F, Shi P C, Feng Y Z, Wang K, Yang W J, Wu X J, Luo W, Yu Y. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries[J]. Adv. Mater., 2020, 32(6): 1905658. |
[84] | Wang Y K, Zhang R F, Sun Z H, Wu H, Lu S Y, Wang J N, Yu W, Liu J M, Gao G X, Ding S J. Spontaneously formed Mott-Schottky electrocatalyst for lithium-sulfur batteries[J]. Adv. Mater., Interfaces 2020, 7(22): 1902092. |
[85] | He J R, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Adv. Energy Mater., 2020, 10(3): 1903241. |
[86] | Xiao X, Wang H, Bao W Z, Urbankowski P, Yang L, Yang Y, Maleski K, Cu L F, Billinge S J L, Wang G X, Gogotsi Y. Two-dimensional arrays of transition metal nitride nanocrystals[J]. Adv. Mater., 2019, 31(33): 1902393. |
[87] | Mosavati N, Chitturi V R, Salley S O, Ng K Y S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries[J]. J. Power Sources, 2016, 321: 87-93. |
[88] | Chen L, Yang W W, Zhang H, Liu J G, Zhou Y. Self-templated preparation of hollow mesoporous TiN microspheres as sulfur host materials for advanced lithium-sulfur batteries[J]. J. Mater. Sci., 2018, 53(14): 10363-10371. |
[89] | Liu D, Wang Z C, Guo Z C, Tian Y, Wang C. Electrospun CuCoN0.6 coating necklace-like N-doped carbon nanofibers for high performance lithium-sulfur batteries[J]. J. Colloid Interface Sci., 2023, 645: 705-714. |
[90] | Liu J T, Yu L H, Ran Q W, Chen X A, Wang X Y, He X D, Jin H L, Chen T, Chen J S, Guo D Y, Wang S. Regulating electron filling and orbital occupancy of anti-bonding states of transition metal nitride heterojunction for high areal capacity lithium-sulfur full batteries[J]. Small, 2024: 2311750. |
[91] | Sun C Y, Ji S, Ma X G, Wang H, Wang X Y, Linkov V, Wang R F. Using sp2 N atom anchoring effect to prepare ultrafine vanadium nitride particles on porous nitrogen-doped carbon as cathode for lithium-sulfur battery[J]. J. Colloid Interface Sci., 2022, 623: 306-317. |
[92] | Lv J J, Ren H B, Cheng Z Y, Joo S W, Huang J R. Polyaniline-coated porous vanadium nitride microrods for enhanced performance of a lithium-sulfur battery[J]. Molecules, 2023, 28(4): 1823. |
[93] | Li X X, Ding K, Gao B, Li Q W, Li Y Y, Fu J J, Zhang X M, Chu P K, Huo K F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries[J]. Nano Energy, 2017, 40: 655-662. |
[94] | Pang Q, Kundu D, Nazar L F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries[J]. Mater. Horizons, 2016, 3(2): 130-136. |
[95] | Hart C J, Cuisinier M, Liang X, Kundu D, Garsuch A, Nazar L F. Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss[J]. ChemComm, 2015, 51(12): 2308-2311. |
[96] | Song J, Xu T, Gordin M L, Zhu P Y, Lv D , Jiang Y B, Chen Y S, Duan Y H, Wang D H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(9): 1243-1250. |
[97] | Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly) sulfides in lithium-sulfur batteries[J]. 2D Mater., 2015, 2(1): 014011. |
[98] | Peng H J, Zhang G, Chen X, Zhang Z W, Xu W T, Huang J Q, Zhang Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2016, 55(42): 12990-12995. |
[99] | Wang H T, Zhang Q F, Yao H B, Liang Z, Lee H W, Hsu P C, Zheng G Y, Cui Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Lett., 2014, 14(12): 7138-7144. |
[100] | Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Challenges and opportunities towards practical lithium-sulfur batteries under lean electrolyte conditions[J]. Angew. Chem. Int. Ed., 2020, 132: 2-20. |
[101] | Kamali A R, Fray D J. Tin-based materials as advanced anode materials for lithium ion batteries: a review[J]. Rev. Adv. Mater. Sci, 2011, 27(1): 14-24. |
[102] | Yang Z G, Xu H M, Shuai T Y, Zhan Q N, Zhang Z J, Huang K, Dai C L, Li G R. Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis[J]. Nanoscale, 2023, 15(28): 11777-11800. |
[1] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[2] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[3] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[4] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[5] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[6] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[7] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[8] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[9] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[10] | 胡炳文, 李超, 耿福山, 沈明. 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)[J]. 电化学(中英文), 2022, 28(2): 2108421-. |
[11] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[12] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[13] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[14] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[15] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||