[1] Wei M, Konishi Y, Zhou H S, et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide[J]. Journal of Material Chemistry, 2006, 16(13): 1287−1293.
[2] Lopez H A, Dhakshinamoorthy A, Ferrer B, et al. Photochemical response of commercial MOFs: Al2(BDC)3 and its use as active material in photovoltaic devices[J]. Journal of Physical Chemistry C, 2011, 115(45): 22200−22206.
[3] Bella F, Bongiovanni R, Kumar R S, et al. Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells[J]. Journal of Material Chemistry A, 2013, 1(32): 9033−9036.
[4] Lee D Y, Shinde D V, Yoon S J, et al. Cu-based metal–organic frameworks for photovoltaic application[J]. Journal of Physical Chemistry C, 2014, 118(30): 16328−16334.
[5] Du X, Fan R Q, Wang X M, et al. Cooperative crystallization of chiral heterometallic indium(iii)−potassium(i) metal−organic frameworks as photosensitizers in luminescence sensors and dye-sensitized solar cells[J]. Crystal Growth &Design, 2016, 16(3): 1737−1745.
[6] Maza W A, Haring A J, Ahrenholtz S R, et al. Ruthenium(II)-polypyridyl zirconium(IV) metal–organic frameworks as a new class of sensitized solar cells[J]. Chemical Science, 2016, 7(1): 719−727.
[7] Chi W S, Roh D K, Lee C S, et al. A shape- and morphology-controlled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells[J]. Journal of Material Chemistry A, 2015, 3(43): 21599−21608.
[8] Chang T, Kung C, Chen H, et al. Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals[J]. Advanced Materials, 2015, 27(44): 7229−7235.
[9] Ho K C, Wu, K C W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs)[J]. Scientific Reports, 2014, 4: 6983.
[10] Li Y F, Pang A Y, Wang C J, et al. Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells[J]. Journal of Material Chemistry, 2011, 21(43): 17259−17264.
[11] Wang Z S, Yanagida M, Sayama K, et al. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency[J]. Chemistry of Materials, 2006, 18(12): 2912−2916.
[12] Li Y F, Chen C Y, Sun X, et al. Metal–organic frameworks at interfaces in dye-sensitized solar cells[J]. ChemSusChem, 2014, 7(9): 2469−2472.
[13] Li W, Li J, Wang L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance [J]. Journal of Material Chemistry A, 2013, 1(38): 11735−11740.
[14] Li Y F, Che Z Z, Sun X, et al. Metal-organic frameworks derived hierarchical ZnO parallelepipeds as efficient scattering layer in dye-sensitized solar cells[J]. Chemical Communications, 2014, 50(68): 9769−9772.
[15] Park Y, Chang Y, Kum B, et al. Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells[J]. Journal of Material Chemistry, 2011, 21(26): 9582−9586.
[16] Dou J, Li F, Xie F, et al. Metal−organic framework derived hierarchical porous anatase TiO2 as a photoanode for dye-sensitized solar cell[J]. Crystal Growth &Design, 2016, 16(1): 121−125. |