[1] |
Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.
doi: 10.1016/j.nanoen.2019.104307
URL
|
[2] |
Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges[J]. Adv. Mater., 2012, 24(2): 229-251.
doi: 10.1002/adma.201102752
URL
|
[3] |
Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.
doi: 10.1126/science.277.5334.1971
URL
|
[4] |
Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y, Wong C P. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitort[J]. Energy Environ. Sci., 2014, 7(8): 2652-2659.
doi: 10.1039/C4EE01195C
URL
|
[5] |
Zhang S C, Du Z J, Lin R X, Jiang T, Liu G R, Wu X M, Weng D S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Adv. Mater., 2010, 22(47): 5378-5382.
doi: 10.1002/adma.201003017
URL
|
[6] |
Wang X H, Yang Z B, Sun X L, Li X W, Wang D S, Wang P, He D Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(27): 9988-9990.
doi: 10.1039/c1jm11490e
URL
|
[7] |
Xia Y Y, Mo X, Ling H Q, Hang T, Li M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates[J]. J. Electrochem. Soc., 2016, 163(10): D575-D578.
doi: 10.1149/2.0021610jes
URL
|
[8] |
Peng Z M, Yang H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143-164.
doi: 10.1016/j.nantod.2008.10.010
URL
|
[9] |
Lohse S E, Murphy C J. The quest for shape control: A history of gold nanorod synthesis[J]. Chem. Mat., 2013, 25(8): 1250-1261.
doi: 10.1021/cm303708p
URL
|
[10] |
Zhou X S, Wan L J, Guo Y G. Synthesis of MoS2 nano-sheet-graphene nanosheet hybrid materials for stable lithium storage[J]. Chem. Commun., 2013, 49(18): 1838-1840.
doi: 10.1039/c3cc38780a
URL
|
[11] |
Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
doi: 10.1149/1.2988134
URL
|
[12] |
Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
doi: 10.1149/2.1111613jes
URL
|
[13] |
Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system-I. Kinetic measurements: Influence of SPS[J]. J. Electrochem. Soc., 2004, 151(4): C262-C271.
doi: 10.1149/1.1651530
URL
|
[14] |
Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132
URL
|
[15] |
Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
doi: 10.1149/1.3078407
URL
|
[16] |
Dow W P, Lu C W, Lin J Y, Hsu F C. Highly selective Cu electrodeposition for filling through silicon holes[J]. Electrochem. Solid State Lett., 2011, 14(6): D63-D67.
doi: 10.1149/1.3562278
URL
|
[17] |
Gu C, Tu J. One-step fabrication of nanostructured Ni film with Lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.
doi: 10.1021/la200778a
URL
|
[18] |
Walter E C, Zach M P, Favier F, Murray B, Inazu K, Hemminger J C, Penner R M. Electrodeposition of porta-ble metal nanowire arrays[M]. USA: Sple-Int. Soc. Optical Engineering, 2002.
|
[19] |
Yin A J, Li J, Jian W, Bennett A J, Xu J M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys. Lett., 2001, 79(7): 1039-1041.
doi: 10.1063/1.1389765
URL
|
[20] |
Huang B H, Zhang X F, Cai J N, Liu W K, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. J. Appl. Ele-ctrochem., 2019, 49(8): 767-777.
|
[21] |
Wu F F, Ze H J, Chen S H, Gao X F. High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings[J]. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902-39909.
doi: 10.1021/acsami.0c10761
URL
|
[22] |
Hang T, Hu A M, Ling H Q, Li M, Mao D L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256(8): 2400-2404.
doi: 10.1016/j.apsusc.2009.10.074
URL
|
[23] |
Ebrahimi F, Bourne G R, Kelly M S, Matthews T E. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostruct. Mater., 1999, 11(3): 343-350.
doi: 10.1016/S0965-9773(99)00050-1
URL
|
[24] |
Elsherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. J. Mater. Sci., 1995, 30(22): 5743-5749.
doi: 10.1007/BF00356715
URL
|
[25] |
Chen Z, Zhu C, Cai M L, Yi X Y, Li J H. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition[J]. Appl. Surf. Sci., 2020, 508: 145291.
doi: 10.1016/j.apsusc.2020.145291
URL
|
[26] |
Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
doi: 10.1016/j.commatsci.2017.11.049
URL
|
[27] |
Wang C, An M Z, Yang P X, Zhang J Q. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochem. Commun., 2012, 18: 104-107.
doi: 10.1016/j.elecom.2012.02.028
URL
|
[28] |
Sun H, Ren P, Fried J R. The compass force field: Parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1998, 8(3-4): 363-363.
|
[29] |
Hackett J C. Chemical reactivity theory: A density functional view[J]. J. Am. Chem. Soc., 2010, 132(21): 7558-7558.
doi: 10.1021/ja1030744
URL
|
[30] |
Jiang Q, Tallury S S, Qiu Y P, Pasquinelli M A. Interfacial characteristics of a carbon nanotube-polyimide nano-composite by molecular dynamics simulation[J]. Nano-technol. Rev., 2020, 9(1): 136-145.
|
[31] |
Premkumar S, Jawahar A, Mathavan T, Dhas M K, Sathe V G, Benial A M F. Dft calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine[J]. Spectroc. Acta Pt. A-Molec. Bio-molec. Spectr., 2014, 129: 74-83.
|
[32] |
Shen J, Li Y, He J H. On the Kubelka-Munk absorption coefficient[J]. Dyes Pigment., 2016, 127: 187-188.
doi: 10.1016/j.dyepig.2015.11.029
URL
|
[33] |
Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
doi: 10.1039/C7RA06857C
URL
|
[34] |
Oláh J, Van Alsenoy C, Sannigrahi A B. Condensed fukui functions derived from stockholder charges: Assess-ment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.
doi: 10.1021/jp014039h
URL
|
[35] |
Lai Z Q, Wang C, Huang Y Z, Chen Y M, Wang S X, Hong Y, Zhou G Y, He W, Su X H, Sun Y K, Tao Y G, Lu X Y. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Mater. Today Commun., 2020, 24: 100973.
|
[36] |
Saraireh S A, Altarawneh M, Tarawneh M A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface[J]. Nanotechnol. Rev., 2021, 10(1): 719-727.
doi: 10.1515/ntrev-2021-0051
URL
|
[37] |
Tarasevich Y I. The surface energy of hydrophilic and hydrophobic adsorbents[J]. Colloid J., 2007, 69(2): 212-220.
doi: 10.1134/S1061933X0702010X
URL
|
[38] |
Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett., 2009, 9(1): 279-282.
doi: 10.1021/nl802886y
URL
|
[39] |
Xu Q, Qian X, Qu Y Q, Hang T, Zhang P, Li M, Gao L. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction[J]. J. Electrochem. Soc., 2016, 163(10): H976-H981.
doi: 10.1149/2.0741610jes
URL
|
[40] |
Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators[J]. Adv. Mater., 2003, 15(7-8): 569-572.
doi: 10.1002/adma.200304552
URL
|