[1] |
Gründler P, Zerihun T, Möller A, Kirbs A. A simple method for heating micro electrodes in-situ[J]. J. Electroanal. Chem., 1993, 360: 309-314.
doi: 10.1016/0022-0728(93)87023-O
URL
|
[2] |
Grundler P, Zerihun T, Kirbs A, Grabow H. Simultaneous joule heating and potential cycling of cylindrical microelectrodes[J]. Anal. Chim. Acta, 1995, 305(1-3): 232-240.
doi: 10.1016/0003-2670(94)00575-7
URL
|
[3] |
Zerihun T, Griindler P. Electrically heated cylindrical microelectrodes.The reduction of dissolved oxygen on Pt[J]. J. Electroanal. Chem., 1996, 404: 243-248.
doi: 10.1016/0022-0728(95)04390-X
URL
|
[4] |
Valdes J L, Miller B. Thermal modulation of rotating disk electrodes: Steady-state response[J]. J. Phys. Chem., 1988, 92: 525-532.
doi: 10.1021/j100313a055
URL
|
[5] |
Gründler P, Degenring D. The limits of aqueous hot-wire electrochemistry: Near-critical and supercritical fluids in electrochemical sensors?[J]. Electroanalysis, 2001, 13: 755-759.
doi: 10.1002/(ISSN)1521-4109
URL
|
[6] |
Baranski A S. Hot microelectrodes[J]. Anal. Chem., 2002, 74: 1294-1301.
pmid: 11922296
|
[7] |
Wildgoose G G, Giovanelli D, Lawrence N S, Compton R G. High-temperature electrochemistry: A review[J]. Electroanalysis, 2004, 16(6): 421-433.
doi: 10.1002/(ISSN)1521-4109
URL
|
[8] |
Gründler P, Flechsig G U. Principles and analytical applications of heated electrodes[J]. Microchim. Acta, 2006, 154(3-4): 175-189.
doi: 10.1007/s00604-006-0512-2
URL
|
[9] |
Grundler P, Kirbs A, Dunsch L. Modern thermoelectrochemistry[J]. Chemphyschem, 2009, 10(11): 1722-1746.
doi: 10.1002/cphc.200900254
pmid: 19634136
|
[10] |
Cutress I J, Marken F, Compton R G. Microwave-assisted electroanalysis: A review[J]. Electroanalysis, 2009, 21(2): 113-123.
doi: 10.1002/elan.v21:2
URL
|
[11] |
Flechsig G U, Walter A. Electrically heated electrodes: Practical aspects and new developments[J]. Electroanalysis, 2012, 24(1): 23-31.
doi: 10.1002/elan.v24.1
URL
|
[12] |
Wang J, Grulndler P, Flechsig G U, Jasinski M, Rivas G, Sahlin E, Paz J L L. Stripping analysis of nucleic acids at a heated carbon paste electrode[J]. 2000, 72, 16: 3752-3756.
|
[13] |
Tsai Y C, Coles B A, Compton R G, Marken F. Microwave activation of electrochemical processes: Enhanced electrodehalogenation in organic solvent media[J]. J. Am. Chem. Soc., 2002, 124(33): 9784-9788.
doi: 10.1021/ja026037w
URL
|
[14] |
Wei H, Sun J J, Guo L, Li X, Chen G N. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode[J]. Chem. Commun., 2009, (20): 2842-2844.
|
[15] |
Walter A, Surkus A E, Flechsig G U. Hybridization detection of enzyme-labeled DNA at electrically heated electrodes[J]. Anal. Bioanal. Chem., 2013, 405(11): 3907-3911.
doi: 10.1007/s00216-013-6815-3
pmid: 23430188
|
[16] |
Huang Z X, Yang S, Guo J W, Wu S H, Sun J J, Chen G N. Supercooled electrodes[J]. Electrochem. Commun., 2014, 48: 107-110.
doi: 10.1016/j.elecom.2014.08.025
URL
|
[17] |
Huang Z X, Yang S, Yao F Z, Xu K X, Zhang J F, Wu S H, Sun J J. Alternate hot and cold electrodes[J]. Electrochem. Commun., 2015, 61: 129-133.
doi: 10.1016/j.elecom.2015.10.016
URL
|
[18] |
Yang S, Huang Z X, Hou X H, Cheng F F, Wu S H, Sun J J. A model for understanding the temperature change of an alternate hot and cold micro-band graphite electrode[J]. Electrochem. Commun., 2016, 68: 71-75.
doi: 10.1016/j.elecom.2016.05.007
URL
|
[19] |
Yang S, Chen X, Mi Z Z, Chen Z M, Li X D, Sun J J, Wu S H. Temperature-controllable electrodes with a one-parameter calibration[J]. ACS Sens., 2019, 4(6): 1594-1602.
doi: 10.1021/acssensors.9b00297
URL
|
[20] |
Chen Z M, Wang Y, Du X Y, Sun J J, Yang S. Temperature-alternated electrochemical aptamer-based biosensor for calibration-free and sensitive molecular measurements in an unprocessed actual sample[J]. Anal. Chem., 2021, 93(22): 7843-7850.
doi: 10.1021/acs.analchem.1c00289
URL
|
[21] |
Ma B, Wang L, He K, Li D G, Liang X D. A lattice boltzmann analysis of the electro-thermo convection and heat transfer enhancement in a cold square enclosure with two heated cylindrical electrodes[J]. Int. J. Therm. Sci., 2021, 164: 106885.
doi: 10.1016/j.ijthermalsci.2021.106885
URL
|
[22] |
Wu S H, Zhu B J, Huang Z X, Sun J J. A heated pencil lead disk electrode with direct current and its preliminary application for highly sensitive detection of luteolin[J]. Electrochem. Commun., 2013, 28: 47-50.
doi: 10.1016/j.elecom.2012.12.008
URL
|
[23] |
Wu S H, Tang Y, Chen L, Ma X G, Tian S M, Sun J J. Amplified electrochemical hydrogen peroxide reduction based on hemin/g-quadruplex dnazyme as electrocatalyst at gold particles modified heated copper disk electrode[J]. Biosens. Bioelectron., 2015, 73: 41-46.
doi: 10.1016/j.bios.2015.05.039
URL
|
[24] |
Wu S H, Zeng Y F, Chen L, Tang Y, Xu Q L, Sun J J. Amplified electrochemical DNA sensor based on hemin/g-quadruplex dnazyme as electrocatalyst at gold particles modified heated gold disk electrode[J]. Sens. Actuator B-Chem., 2016, 225: 228-232.
doi: 10.1016/j.snb.2015.11.020
URL
|
[25] |
Wu S H, Zhang B, Wang F F, Mi Z Z, Sun J J. Heating enhanced sensitive and selective electrochemical detection of Hg2+ based on T-Hg2+-T structure and exonuclease iii-assisted target recycling amplification strategy at heated gold disk electrode[J]. Biosens. Bioelectron., 2018, 104: 145-151.
doi: 10.1016/j.bios.2018.01.004
URL
|
[26] |
Beckmann A, Coles B A, Compton R G, Gründler P, Marken F, Neudeck A. Modeling hot wire electrochemistry. Coupled heat and mass transport at a directly and continuously heated wire[J]. 2000, 104(4): 764-769.
|
[27] |
Baranski A S. Hot microelectrodes[J]. Anal. Chem., 2002, 74(6): 1294-1301.
pmid: 11922296
|
[28] |
Boika A, Baranski A S. Dielectrophoretic and electrothermal effects at alternating current heated disk microelectrodes[J]. Anal. Chem., 2008, 80: 7392-7400.
doi: 10.1021/ac801094s
pmid: 18771275
|
[29] |
Baranski A S, Boika A. Ultrahigh frequency voltammetry: Effect of electrode material and frequency of alternating potential modulation on mass transport at hot-disk microelectrodes[J]. Anal. Chem., 2012, 84(3): 1353-1359.
doi: 10.1021/ac202234v
pmid: 22243033
|
[30] |
Qiu F, Compton R G, Coles B A, Marken F. Thermal activation of electrochemical processes in a rf-heated channel flow cell: Experiment and finite element simulation[J]. J. Electroanal. Chem., 2000, 492(2): 150-155.
doi: 10.1016/S0022-0728(00)00222-9
URL
|
[31] |
Gabrielli C, Keddam M, Lizee J F. Frequency analysis of a temperature perturbation technique in electrochemistry : Part i. Theoretical aspects[J]. J. Electroanal. Chem., 1993, 359(1-2): 1-20.
doi: 10.1016/0022-0728(93)80397-Z
URL
|
[32] |
Gabrielli C. A transfer function approach for a generalized electrochemical impedance spectroscopy[J]. J. Electrochem. Soc., 1994, 141(5): 1147-1157.
doi: 10.1149/1.2054888
|
[33] |
Mahnke N, Markovic A, Duwensee H, Wachholz F, Flechsig G U, van Rienen U. Numerically optimized shape of directly heated electrodes for minimal temperature gradients[J]. Sens. Actuator B-Chem., 2009, 137(1): 363-369.
doi: 10.1016/j.snb.2008.11.034
URL
|
[34] |
Frischmuth K, Visocky P, Gründler P. On modelling heat transfer in chemical microsensors[J]. Int. J. Eng. Sci., 1996, 34(5): 523-530.
doi: 10.1016/0020-7225(95)00095-X
URL
|
[35] |
Jenkins D M, Song C, Fares S, Cheng H, Barrettino D. Disposable thermostated electrode system for temperature dependent electrochemical measurements[J]. Sens. Actuator B-Chem., 2009, 137(1): 222-229.
doi: 10.1016/j.snb.2008.09.046
URL
|