电化学(中英文) ›› 2021, Vol. 27 ›› Issue (4): 377-387. doi: 10.13208/j.electrochem.201231
收稿日期:
2020-12-30
修回日期:
2021-01-13
出版日期:
2021-08-28
发布日期:
2021-01-25
通讯作者:
沈培康
E-mail:pkshen@gxu.edu.cn
基金资助:
Ye-Peng Fan1,2, Ye-Qiang Luo1,2, Pei-Kang Shen1,*()
Received:
2020-12-30
Revised:
2021-01-13
Published:
2021-08-28
Online:
2021-01-25
Contact:
Pei-Kang Shen
E-mail:pkshen@gxu.edu.cn
摘要:
锂硫电池的实际能量密度不高和多硫化物(LiPSs)的穿梭效应等问题严重影响了该电池的实际应用。本文通过将二维的Ti3C2Tx Mxene纳米片与碳黑/硫(CB/S)材料进行混合,制备了Ti3C2Tx-CB/S正极材料并将其涂覆在商业隔膜(PP)上,最终获得了Ti3C2Tx-CB/S-PP一体式电极并用于锂硫电池。利用Ti3C2Tx纳米片对CB/S进行修饰,不仅能提高活性物质硫的导电性,还能对扩散的LiPSs进行物理阻挡和化学吸附。而一体式电极的设计有利于提高电池的能量密度。恒流充放电测试结果表明,Ti3C2Tx-CB/S-PP电极在0.1 C电流下的初始放电容量为1028.8 mAh·g-1,高于不含Ti3C2Tx的CB/S-PP电极的896.8 mAh·g-1。Ti3C2Tx-CB/S-PP电极还展示出了比基于传统铝箔集流体的Ti3C2Tx-CB/S-Al电极更好的循环稳定性,前者在0.5 C下400圈长循环测试中的每圈衰减率为0.072%,而后者则为更高的0.10%。本文利用Ti3C2Tx-CB/S构建一体式电极的策略为实现高性能和高能量密度的锂硫电池提供了新的研究方向。
范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387.
Ye-Peng Fan, Ye-Qiang Luo, Pei-Kang Shen. Study on MXene-Carbon Black/Sulfur Composite in Integrated Electrode of Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2021, 27(4): 377-387.
[1] |
Li R R, Zhou X J, Shen H J, Yang M H, Li C L. Conductive holey MoO2-Mo3N2 heterojunctions as Job-Synergistic cathode host with low surface area for high-loading Li-S batteries[J]. ACS Nano, 2019, 13(9): 10049-10061.
doi: 10.1021/acsnano.9b02231 URL |
[2] |
Tang T Y, Hou Y L. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries[J]. Small Methods, 2019, 4(6): 1900001.
doi: 10.1002/smtd.v4.6 URL |
[3] |
Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Acc. Chem. Res., 2013, 46(5): 1135-1143.
doi: 10.1021/ar3001348 URL |
[4] |
Seh Z W, Sun Y W, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634.
doi: 10.1039/C5CS00410A URL |
[5] |
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11(1): 19-29.
doi: 10.1038/nmat3191 URL |
[6] |
Ma L, Hendrickson K E, Wei S, Archer L A. Nanomaterials: Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10(3): 315-338.
doi: 10.1016/j.nantod.2015.04.011 URL |
[7] |
Song Y Z, Sun Z T, Fan Z D, Cai W L, Shao Y L, Sheng G, Wang M L, Song L X, Liu Z F, Zhang Q, Sun J Y. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy, 2020, 70: 104555.
doi: 10.1016/j.nanoen.2020.104555 URL |
[8] |
Liu M, Zhou D, He Y B, Fu, Y Z, Qin X Y, Miao C, Du H D, Li B H, Yang Q H, Lin Z Q, Zhao T S, Kang F Y. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries[J]. Nano Energy, 2016, 22: 278-289.
doi: 10.1016/j.nanoen.2016.02.008 URL |
[9] |
Pang Y, Wei J S, Wang Y G, Xia Y Y. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(10): 1702288.
doi: 10.1002/aenm.201702288 URL |
[10] |
Huang S Z, Zhang L L, Wang J Y, Zhu J L, Shen P K. In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li-S batteries[J]. Nano Res., 2018, 11(3): 1731-1743.
doi: 10.1007/s12274-017-1791-0 URL |
[11] |
Salhabi E H M, Zhao J L, Wang J Y, Yang M, Wang B, Wang D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2019, 58(27): 9078-9082.
doi: 10.1002/anie.v58.27 URL |
[12] |
Zhou J W, Li R, Fan X X, Chen Y F, Han R D, Li W, Zheng J, Wang B, Li X G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy Environ. Sci., 2014, 7(8): 2715-2724.
doi: 10.1039/C4EE01382D URL |
[13] |
Zhou W D, Yu Y C, Chen H, DiSalvo F J, Abruna H D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2013, 135(44): 16736-16743.
doi: 10.1021/ja409508q URL |
[14] |
Shang X N, Guo P Q, Qin T F, Liu M T, Lv M Z, Liu D Q, He D Y. Sulfur immobilizer by nanoscale TiO2 trapper deposited on hierarchical porous carbon and graphene for cathodes of lithium-sulfur batteries[J]. Adv. Mater. Interfaces., 2018, 5(7): 1701602.
doi: 10.1002/admi.v5.7 URL |
[15] |
Zheng J M, Tian J, Wu D X, Gu M, Xu W, Wang C M, Gao F, Engelhard M H, Zhang J G, Liu J, Xiao J. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters., 2014, 14(5): 2345-2352.
doi: 10.1021/nl404721h URL |
[16] |
Zhong Y R, Yin L, He P, Liu W, Wu Z S, Wang H L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2018, 140(4): 1455-1459.
doi: 10.1021/jacs.7b11434 URL |
[17] |
Zhou G M, Pei S F, Li L, Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(4): 625-631.
doi: 10.1002/adma.201302877 URL |
[18] |
Liang X, Rangom Y, Kwok C Y, Pang Q, Nazar L F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Adv. Mater., 2017, 29(3): 1603040.
doi: 10.1002/adma.v29.3 URL |
[19] | Wang X W, Yang C H, Xiong X H, Chen G L, Huang M Z, Wang J H, Liu Y, Liu M L, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries[J]. Energy Storage Mater., 2019, 16: 344-353. |
[20] |
Huang H S, Song Y, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J]. Appl. Catal. B - Environ., 2019, 251: 154-161.
doi: 10.1016/j.apcatb.2019.03.066 URL |
[21] |
Guo D, Ming F W, Su H, Wu Y Q, Wahyudi W, Li M L, Hedhili M N, Sheng G, Li L J, Alshareef H N, Li Y X, Lai Z P. MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery[J]. Nano Energy, 2019, 61: 478-485.
doi: 10.1016/j.nanoen.2019.05.011 URL |
[22] |
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(19): 1900219.
doi: 10.1002/aenm.v9.19 URL |
[23] |
Li N, Xie Y, Peng S T, Xiong X, Han K. Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation[J]. J. Energy Chem., 2020, 42: 116-125.
doi: 10.1016/j.jechem.2019.06.014 URL |
[24] |
Bao W Z, Tang X, Guo X, Choi S, Wang C Y, Gogotsi Y, Wang G X. Porous Cryo-dried MXene for efficient capacitive deionization[J]. Joule, 2018, 2(4): 778-787.
doi: 10.1016/j.joule.2018.02.018 URL |
[25] |
Demir-Cakan R, Morcrette M, Gangulibabu, Gueguen A, Dedryvere R, Tarascon J M. Li-S batteries: simple approaches for superior performance[J]. Energy Environ. Sci., 2013, 6(1): 176-182.
doi: 10.1039/c2ee23411d URL |
[26] |
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6(1): 5682.
doi: 10.1038/ncomms6682 URL |
[27] |
Tao X Y, Wang J G, Ying Z G, Cai Q X, Zheng G Y, Gan Y P, Huang H, Xia Y, Liang C, Zhang W K, Cui Y. Strong sulfur binding with conducting magnéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Lett., 2014, 14(9): 5288-5294.
doi: 10.1021/nl502331f URL |
[28] |
Zha C Y, Yang F L, Zhang J J, Zhang T K, Dong S, Chen H Y. Promoting polysulfide redox reactions and improving electronic conductivity in lithium-sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets[J]. J. Mater. Chem. A, 2018, 6(34): 16574-16582.
doi: 10.1039/C8TA05573D URL |
[29] | Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931. |
[30] |
Liu Q, Zhang J H, He S A, Zou R J, Xu C T, Cui Z, Huang X J, Guan G Q, Zhang W L, Xu K B, Hu J Q. Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution[J]. Small, 2018, 14(20): 1703816.
doi: 10.1002/smll.v14.20 URL |
[31] |
Lin J H, Zhang K F, Zhu Z Q, Zhang R Z, Li N, Zhao C H. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(2): 2497-2504.
doi: 10.1021/acsami.9b18723 URL |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[7] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[10] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[11] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[12] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[13] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[14] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
[15] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||