电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 740-749. doi: 10.13208/j.electrochem.200646
收稿日期:
2020-06-28
修回日期:
2020-09-01
出版日期:
2020-10-28
发布日期:
2020-09-21
通讯作者:
李长明
E-mail:ecmli@swu.edu.cn
MENG Quan-hua1, DENG Wen-wen2, LI Chang-ming1,2,3,*()
Received:
2020-06-28
Revised:
2020-09-01
Published:
2020-10-28
Online:
2020-09-21
Contact:
LI Chang-ming
E-mail:ecmli@swu.edu.cn
摘要:
锂硫电池由于具有较高的理论容量被视为一种最具发展潜力的储能装置. 然而,硫的利用率较低及循环寿命短等问题限制着其商业化进程. 本文通过一种简单易行的方法将三聚氰胺(C3H6N6)和L半胱氨酸(C3H7NO2S)碳化,制备出一种氮掺杂类石墨烯活性炭材料(NGC). 该材料的类石墨烯结构能够有效抑制锂硫电池在充放电过程中产生的体积效应,以此提升其循环性能. 不仅如此,材料中含有的含氮官能团还可以促进离子转移,抑制多硫化物的溶解,进而提升硫的利用率. 其中,制备出的NGC-8/PS复合电极用于锂硫电池时在0.2 C的电流密度下初始容量为1164.1 mAh·g-1,在经过400圈的充放电循环之后依然具有909.4 mAh·g-1的比容量,每圈容量衰减仅为0.05%,甚至在2C的电流密度下也能达到820 mAh·g-1的高比容量.
中图分类号:
孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749.
MENG Quan-hua, DENG Wen-wen, LI Chang-ming. Facile Synthesis of Nitrogen-Doped Graphene-Like Active Carbon Materials for High Performance Lithium-Sulfur Battery[J]. Journal of Electrochemistry, 2020, 26(5): 740-749.
Tab. S2
Surface N species concentrations of NGC based on the high resolution N 1s spectra
Sample | Total N in sample/at% | Each N state in sample/at% | |||
---|---|---|---|---|---|
Pyridinc (398 eV) | Pyrrolic (398.8 eV) | Quaternary (400.8 eV) | Oxidized (402.9 eV) | ||
NGC-2 | 10.42 | 2.18 | 2.37 | 4.02 | 1.85 |
NGC-4 | 9.92 | 2.73 | 2.26 | 4.66 | 0.27 |
NGC-8 | 9.99 | 2.28 | 2.14 | 4.51 | 1.06 |
Tab. 1
Performance comparison of NGC-8/PS with the sulfur host carbon materials reported previously.
Cathode | Current density | Sulfur loading/(mg·cm-2) | Cycle | Capacity/ (mAh·g-1) | Reference |
---|---|---|---|---|---|
S-NPC/G | 1 C | 2.4 | 300 | 608 | [40] |
3DP-FDE | 0.2 C | 3 | 200 | 752 | [41] |
WSAC-8/S | 1 C | 1 | 200 | 800 | [42] |
rGO/PC/S | 1 C | 1.2 | 300 | 848 | [43] |
a-NOSPC/S | 0.5 C | 1.1 | 400 | 740 | [44] |
S-GO/MWCNT | 0.2 C | 1.5-2 | 400 | 670 | [45] |
rNGO/S | 1 C | 1.2 | 200 | 592 | [46] |
S/NDPC-1 | 1 C | 1 | 500 | 541 | [47] |
NGC-8/PS | 0.2 C | 2 | 400 | 910 | This work |
1 C | 2 | 500 | 800 |
[1] |
Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013,42(7):3018-3032.
doi: 10.1039/c2cs35256g URL pmid: 23325336 |
[2] |
Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015,27(12):1980-2006.
URL pmid: 25688969 |
[3] | Rosenman A, Markevich E, Salitra G, et al. Review on Li-sulfur battery systems: an integral perspective[J]. Ad-vanced Energy Materials, 2015,5(16):1500212. |
[4] |
Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research, 2013,46(5):1135-1143.
doi: 10.1021/ar3001348 URL pmid: 23054430 |
[5] | Pope M A, Aksay I A. Structural design of cathodes for Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500124. |
[6] |
Wang J L, He Y S, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries[J]. Advanced Materials, 2015,27(3):569-575.
doi: 10.1002/adma.201402569 URL pmid: 25256595 |
[7] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012,11(1):19-29.
URL pmid: 22169914 |
[8] |
L. Ma, Zhuang H L L, Wei S Y, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode[J]. ACS Nano, 2016,10(1):1050-1059.
doi: 10.1021/acsnano.5b06373 URL pmid: 26634409 |
[9] |
Fang R P, Zhao S Y, Hou P X, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016,28(17):3374-3382.
doi: 10.1002/adma.201506014 URL pmid: 26932832 |
[10] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
URL pmid: 19448613 |
[11] | Ji L W, Rao M M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011,4(12):5053-5059. |
[12] |
Yao H B, Zheng G Y, Hsu P C, et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface[J]. Nature Communications, 2014,5:3943.
doi: 10.1038/ncomms4943 URL pmid: 24862162 |
[13] |
Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203.
doi: 10.1038/ncomms11203 URL pmid: 27046216 |
[14] | Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013,1(22):6602-6608. |
[15] | Puthirath A B, Baburaj A, Kato K, et al. High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery[J]. Electrochimica Acta, 2019,306:489-497. |
[16] | Liu X, Huan J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20):1601759. |
[17] |
Yilmaz G, Peh S B, Zhao D, et al. Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019,6(21):1901129.
URL pmid: 31728281 |
[18] | Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advance, 2016,2(4):e1501122. |
[19] | Song J X, Xu T, Gordin M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014,24(9):1243-1250. |
[20] |
Zhou G M, Wang D W, Yin L C, et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage[J]. ACS Nano, 2012,6(4):3214-3223.
URL pmid: 22424545 |
[21] |
Guo J C, Xu Y H, Wang C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011,11(10):4288-4294.
doi: 10.1021/nl202297p URL pmid: 21928817 |
[22] |
Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
doi: 10.1021/acs.nanolett.5b01919 URL pmid: 26148211 |
[23] |
Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008,2(3):572-578.
URL pmid: 19206584 |
[24] | Shen W Z, Ren L W, Zhou H, et al. Facile one-pot synjournal of bimodal mesoporous carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011,21(11):3890-3894. |
[25] | Biniak S, Szymański G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997,35(12):1799-1810. |
[26] |
Yang H B, Miao J W, Hung S F, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016,2(4):e1501122.
URL pmid: 27152333 |
[27] | Chen C, Xu G B, Wei X L. A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated Ndoped carbon nanosheet architecture for use in supercapacitors[J]. Journal of Materials Chemistry A, 2016,4(25):9900-9909. |
[28] | Pei F, Lin L L, Fu A, et al. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries[J]. Joule, 2017,2(2):323-336. |
[29] | Zhu L, Jiang H T, Ran W X, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries[J]. Applied Surface Science, 2019,489:154-164. |
[30] |
Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
URL pmid: 26148211 |
[31] | Yamin H, Gorenshtein A, Penciner J, et al. Oxidation/reduction mechanismsof polysulfidesin THF solutions[J]. Journal of Electrochemstry Society, 1988,135(5):1045-1048. |
[32] |
Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
doi: 10.1002/adma.201103274 URL pmid: 22052740 |
[33] | Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries[J]. Solid State Ionics, 2004,175(1/4):243-245. |
[34] |
Nelson J, Misra S, Yang Y. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012,134(14):6337-6343.
URL pmid: 22432568 |
[35] |
Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011,50(26):5904-5908.
doi: 10.1002/anie.201100637 URL pmid: 21591036 |
[36] |
Cai J J, Wu C, Zhu Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources, 2017,341:165-174.
doi: 10.1016/j.jpowsour.2016.12.008 URL |
[37] | Tripathi A K, Verma Y L, Singh R K. Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41[J]. Journal of Materials Chemistry A, 2015,3(47):23809-23820. |
[38] | Pei F, An T H, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries[J]. Advanced Energy Materials, 2016,6(8):1502539. |
[39] | Zheng Z M, Guo H C, Pei F, et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries[J]. Advanced Functional Materials. 2016,26(48):8952-8959. |
[40] | Chen K, Sun Z H, Fang R P, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707592. |
[41] | Gao X J, Sun Q, Yang X F, et al. Toward a remarkable Li-S battery via 3D printing[J]. Nano Energy, 2019,56:595-603. |
[42] |
Wu P, Chen L H, Xiao S S, et al. Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li-S batteries[J]. Nanoscale, 2018,10(25):11861-11868.
URL pmid: 29897083 |
[43] |
Zhang H, Gao Q M, Qian W W, et al. Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li-S battery cathode[J]. ACS Applied Materials & Interfaces, 2018,10(22):18726-18733.
doi: 10.1021/acsami.8b03806 URL pmid: 29762008 |
[44] | Zhong M E, Guan J D, Sun J C, et al. Carbon nanodot-decorated alveolate N, O, S tridoped hierarchical porous carbon as efficient electrocatalysis of polysulfide conversion for lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:600-609. |
[45] | Kim J, Kang Y, Song S W, et al. Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries[J]. Electrochimica Acta, 2019,299:27-33. |
[46] | Duan L F, Zhao L J, Cong H, et al. Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries[J]. Small, 2019,15(7):1804347. |
[47] | Wang S X, Zou K X, Qian Y X, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries[J]. Carbon, 2019,144:745-755. |
[1] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[4] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[7] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[8] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[9] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[10] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[11] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[12] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[13] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[14] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[15] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||