[1] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741
URL
|
[2] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
doi: 10.1038/35104644
URL
|
[3] |
Ai X P(艾新平), Yang H X(杨汉西). Multi-electron redox materials for high energy density electrodes[J]. J. Electrochem.(电化学), 2011, 17(2): 123-133.
|
[4] |
Muldoon J, Bucur C B, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond[J]. Chem. Rev., 2014, 114(23): 11683-11720.
doi: 10.1021/cr500049y
URL
|
[5] |
Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype, systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727.
doi: 10.1038/35037553
URL
|
[6] |
Wang F F(王菲菲), Guo Y S(郭永胜), Yang J(杨军), Nuli Y N(努丽燕娜), Wang J L(王久林). Electrochemical characterization of (PhMgCl)2-AlCl3/mixed ether electroly-tes[J]. J. Electrochem.(电化学), 2012, 18(1): 56-61.
|
[7] |
Tao Z L, Xu L N, Gou X L, Chen J, Yuan H T. TiS2 nano-tubes as the cathode materials of Mg-ion batteries[J]. Chem. Commun., 2004, 18: 2080-2081.
|
[8] |
Liang Y L, Feng R J, Yang S Q, Ma H, Liang J, Chen J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode[J]. Adv. Mater., 2011, 23(5): 640-643.
doi: 10.1002/adma.201003560
URL
|
[9] |
Chao D L, Liu E Z, Jaroniec M, Zhao N Q, Qiao S Z. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level[J]. Energy Environ. Sci., 13(4): 1096-1131.
doi: 10.1039/C9EE03549D
URL
|
[10] |
Shi Y F, Hua C X, Li B, Fang X P, Yao C H, Zhang Y C, Hu Y S, Wang Z X, Chen L Q, Zhao D Y, Stucky G D. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance[J]. Adv. Funct. Mater., 2013, 23(14): 1832-1838.
doi: 10.1002/adfm.v23.14
URL
|
[11] |
Wang H, Wang X Y, Wang L, Wang J, Jiang D L, Li G P, Zhang Y, Zhong H H, Jiang Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery[J]. J. Phys. Chem. C, 2015, 119(19): 10197-10205.
doi: 10.1021/acs.jpcc.5b00353
URL
|
[12] |
Morales J, Santos J, Tirado J L. Electrochemical studies of lithium and sodium intercalation in MoSe2[J]. Solid State Ion., 1996, 83(1-2): 57-64.
doi: 10.1016/0167-2738(95)00234-0
URL
|
[13] |
Truong Q D, Devaraju M K, Nakayasu Y, Tamura N, Sasaki Y, Tomai T, Honma I. Exfoliated MoS2 and MoSe2 nanosheets by a supercritical fluid process for a hybrid Mg-Li-ion battery[J]. ACS Omega, 2017, 2(5): 2360-2367.
doi: 10.1021/acsomega.7b00379
URL
|
[14] |
Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S. Hydrothermal synjournal of 3D hierarchical flower-like MoSe2 microspheres and their adsorption performances for methyl orange[J]. Appl. Surf. Sci., 2016, 379: 296-303.
doi: 10.1016/j.apsusc.2016.04.086
URL
|
[15] |
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure. Appl. Chem., 1985, 57(4): 603-619.
doi: 10.1351/pac198557040603
URL
|
[16] |
Liu Y, Zhu M Q, Chen D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties[J]. J. Mater. Chem. A, 2015, 3(22): 11857-11862.
doi: 10.1039/C5TA02100F
URL
|
[17] |
Yang F Y, Ban D Y, Fang R C, Xu S H, Xu P S, Yuan S X. Valence band offset and interface formation of Ge/ZnSe(100) studied by synchrotron radiation photoemission[J]. J. Electron. Spectros. Relat. Phenomena., 1996, 80: 193-196.
doi: 10.1016/0368-2048(96)02954-4
URL
|
[18] |
Bao D, Wang Y, Li X B, Wu T T, Chen Y J, Yang P P. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms[J]. Chem. Mater., 2015, 27(19): 6730-6736.
doi: 10.1021/acs.chemmater.5b02753
URL
|
[19] |
Gao J Y, Li Y P, Shi L, Li J J, Zhang G Q. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance[J]. ACS Appl. Mater. Interfaces, 2018, 10(24): 20635-20642.
doi: 10.1021/acsami.8b06442
URL
|
[20] |
Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211.
doi: 10.1126/science.1249625
URL
|
[21] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014, 7(5): 1597-1614.
doi: 10.1039/c3ee44164d
URL
|
[22] |
Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007, 111(40): 14925-14931.
doi: 10.1021/jp074464w
URL
|
[23] |
Sheng J Z, Peng C, Yan S W, Zhang G B, Jiang Y L, An Q Y, Wei Q L, Ru Q, Mai L Q. New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesiumbased batteries[J]. J. Mater. Chem. A, 2018, 6(28): 13901-13907.
doi: 10.1039/C8TA01818A
URL
|
[24] |
Sheng J Z, Zang H, Tang C J, An Q Y, Wei Q L, Zhang G B, Chen L N, Peng C, Mai L Q. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Nano Energy, 2016, 24: 130-138.
doi: 10.1016/j.nanoen.2016.04.021
URL
|
[25] |
Peng C, Lyu H Y, Wu L, Xiong T F, Xiong F Y, Liu Z A, An Q Y, Mai L Q. Lithium- and magnesium-storage mechanisms of novel hexagonal nbSe2[J]. ACS Appl. Mater. Interfaces, 2018, 10(43): 36988-36995.
doi: 10.1021/acsami.8b12662
URL
|
[26] |
Zhang Y J, Chen D, Li X, Shen J W, Chen Z X, Cao S A, Li T, Xu F. α-MoS3@CNT nanowire cathode for rechar-geable Mg batteries: a pseudocapacitive approach for efficient Mg-storage[J]. Nanoscale, 2019, 11(34): 16043-16051.
doi: 10.1039/C9NR04280F
URL
|
[27] |
Fan X Y(樊小勇), Xu J M(许金梅), Zhuang Q C(庄全超), J H H(江宏宏), Huang L(黄令), Jiang Y X(姜艳霞), Dong Q F(董全峰), Sun S G(孙世刚), Composite electroplating and characterizations of Sn-SBA15 anode for lithium-ion batteries[J]. J. Electrochem.(电化学), 2007, 13(1): 25-29.
|