电化学(中英文) ›› 2021, Vol. 27 ›› Issue (1): 108-117. doi: 10.13208/j.electrochem.200409
张运丰*(), 董佳明, 谭畅, 霍士康, 王佳颖, 何阳, 王雅莹
收稿日期:
2020-04-16
修回日期:
2020-07-01
出版日期:
2021-02-28
发布日期:
2020-07-01
通讯作者:
张运丰
E-mail:zhangyf329@gmail.com
基金资助:
Yun-Feng Zhang*(), Jia-Ming Dong, Chang Tan, Shi-kang Huo, Jia-ying Wang, Yang He, Ya-Ying Wang
Received:
2020-04-16
Revised:
2020-07-01
Published:
2021-02-28
Online:
2020-07-01
Contact:
Yun-Feng Zhang
E-mail:zhangyf329@gmail.com
摘要:
本文成功制备了磺酸锂功能化石墨烯,通过原位聚合方式成功将其添加到单离子传导聚合物电解质中制备出磺酸锂功能化石墨烯改性半互穿网络型多孔单离子传导聚合物复合电解质。与未掺杂磺酸锂功能化石墨烯半互穿网络型多孔单离子传导聚合物电解质相比,该电解质具有更高的孔隙率、吸液率、机械拉伸强度和离子电导率。电化学测试结果表明,掺杂磺酸锂功能化石墨烯后,单离子传导聚合物电解质表现出与电极界面更好的相容性,组装的Li|LiFePO4锂离子电池表现出良好的循环性能和更高的倍率性能。对氧化石墨烯磺酸锂功能化可应用于对单离子传导聚合物电解质的改性,有助于提升单离子传导聚合物电解质的综合性能,获得更高的电池性能。
张运丰, 董佳明, 谭畅, 霍士康, 王佳颖, 何阳, 王雅莹. Li-SGO掺杂半互穿网络型多孔单离子传导聚合物复合电解质的制备[J]. 电化学(中英文), 2021, 27(1): 108-117.
Yun-Feng Zhang, Jia-Ming Dong, Chang Tan, Shi-kang Huo, Jia-ying Wang, Yang He, Ya-Ying Wang. Preparation and Performance Investigation of Li-SGO doped Semi-IPNs Porous Single Ion Conducting Polymer electrolyte[J]. Journal of Electrochemistry, 2021, 27(1): 108-117.
[1] | Hu J(胡静), Huang B B(黄碧斌), Jiang L P(蒋莉萍), Feng K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power (中国电力), 2020,53(1):100-107. |
[2] |
Lee K T, Jeong S, Cho J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries[J]. Accounts Chem. Res, 2012,46(5):1161-1170.
doi: 10.1021/ar200224h URL |
[3] |
Chen W, Lei T Y, Wu C Y, Deng M, Gong C H, Hu K, Ma Y C, Dai L P, Lü W Q, He W D, Liu X J, Xiong J, Yan C L. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Adv. Energy Mater., 2018,8(10):1702348.
doi: 10.1002/aenm.201702348 URL |
[4] |
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017,29(44):1703548-n/a.
URL pmid: 29024072 |
[5] |
Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017,46(3):797-815.
doi: 10.1039/c6cs00491a URL pmid: 28098280 |
[6] |
Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018,6(2):289-295.
doi: 10.1002/ente.v6.2 URL |
[7] | Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020,24:579-587. |
[8] |
Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020,32(10):1905771.
doi: 10.1002/adma.v32.10 URL |
[9] |
Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020,11(2):461-471.
doi: 10.1039/C9PY01035A URL |
[10] |
Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A , 2020,8(4):1557-1577.
doi: 10.1039/C9TA11178F URL |
[11] |
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020,30(4):1906444.
doi: 10.1002/adfm.v30.4 URL |
[12] |
Zhang Y F, Liu Y, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Fluorene-containing cardo and fully aromatic single ion conducting polymer electrolyte for room temperature, high performance lithium ion batteries[J]. ChemistrySelect, 2017,2(26):7904-7908.
doi: 10.1002/slct.201701006 URL |
[13] |
Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016,306:152-161.
doi: 10.1016/j.jpowsour.2015.12.010 URL |
[14] |
Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014,4(83):43857-43864.
doi: 10.1039/C4RA08709G URL |
[15] |
Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013,3(35):14934-14937.
doi: 10.1039/c3ra41167b URL |
[16] |
Li Z, Yao Q M, Zhang Q, Zhao Y Q, Gao D X, Li S S, Xu S M. Creating ionic channels in single-ion conducting solid polymer electrolyte by manipulating phase separation structure[J]. J. Mater. Chem. A, 2018,6(48):24848-24859.
doi: 10.1039/C8TA08967A URL |
[17] |
Rohan R, Sun Y B, Cai W W, Pareek K, Zhang Y F, Xu G D, Cheng H S. Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries[J]. J. Mater. Chem. A, 2014,2(9):2960-2967.
doi: 10.1039/C3TA13765A URL |
[18] | Wu P(吴鹏), Li Z L(李忠伦), Y Z(余智), Liu P B(刘鹏波). Preparation of porous polyimide film with low dielectric constant by nonsolvent induced phase separation[J]. Polym. Mater. Sci. Eng. (高分子材料科学与工程), 2018,34(3):132-137. |
[19] |
Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019,9:19320.
doi: 10.1038/s41598-019-55865-6 URL pmid: 31848415 |
[20] |
Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci. , 2018,568:22-29.
doi: 10.1016/j.memsci.2018.09.052 URL |
[21] | Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu. (化学教育(中英文)), 2020,41(2):76-80. |
[22] |
Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014,6(20):17534-17542.
URL pmid: 25225970 |
[23] |
Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018,397:79-86.
doi: 10.1016/j.jpowsour.2018.07.007 URL |
[24] |
Liu X P, Yang Z H, Zhang Y F, Li C C, Dong J M, Liu Y, Cheng H S. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application[J]. Int. J. Hydrog. Energy, 2017,42(15):10275-10284.
doi: 10.1016/j.ijhydene.2017.02.128 URL |
[25] | Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. of Electrochem. (电化学), 2019,25(5):621-630. |
[26] | Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin. (复合材料学报), 2020: 37(5):1070-1080. |
[27] |
Zhang Y F, Ting J W Y, Rohan R, Cai W W, Li J, Xu G D, Chen Z X, Lin A, Cheng H S. Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide[J]. J. Mater. Sci. , 2014,49(9):3442-3450.
doi: 10.1007/s10853-014-8055-0 URL |
[28] |
Li C C, Zhang Y F, Liu X P, Dong J M, Wang J Y, Yang Z H, Cheng H S. Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. J. Mater. Sci., 2018,53(7):5501-5510.
doi: 10.1007/s10853-017-1945-1 URL |
[29] |
Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci. , 2016,507:99-106.
doi: 10.1016/j.memsci.2016.02.002 URL |
[30] |
Zhai C X, Zhou H H, Gao T, Zhao L L, Lin S C. Electrostatically tuned microdomain morphology and phase-dependent ion transport anisotropy in single-ion conducting block copolyelectrolytes[J]. Macromolecules, 2018,51(12):4471-4483.
doi: 10.1021/acs.macromol.8b00451 URL |
[31] |
Nguyen H D, Kim G T, Shi J L, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy Environ. Sci., 2018,11(11):3298-3309.
doi: 10.1039/C8EE02093K URL |
[32] |
Kamal A Z, Çelik S Ü, Bozkurt A. Single ion conducting blend polymer electrolytes based on LiPAAOB and PPEGMA[J]. J. Inorg. Organomet. Polym. Mater., 2018,28(4):1616-1623.
doi: 10.1007/s10904-018-0805-z URL |
[33] |
Zhang Y F, Rohan R, Sun Y B, Cai W W, Xu G D, Lin A, Cheng H S. A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability[J]. RSC Adv., 2014,4(40):21163-21170.
doi: 10.1039/C4RA02729A URL |
[34] |
Hu M F, Yuan Y, Liu Y J, Tian L Y, Zhang Y Y, Long D H. Progressively providing ionic inhibitor via functional nanofiber layer to stabilize lithium metal anode[J]. Electrochim. Acta, 2019,302:301-309.
doi: 10.1016/j.electacta.2019.02.045 URL |
[35] |
Deng K R, Qin J X, Wang S J, Ren S, Han D M, Xiao M, Meng Y Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte[J]. Small, 2018,14(31):1801420.
doi: 10.1002/smll.v14.31 URL |
[1] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[2] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[3] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[4] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[5] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[6] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[7] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[8] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[9] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[10] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[11] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[12] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[13] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
[14] | 李丽娟, 朱振东, 代娟, 王蓉蓉, 彭文. 锂离子电池正极材料Li[NixCoyMnz]O2 (x = 0.6, 0.85)相变对比[J]. 电化学(中英文), 2021, 27(4): 405-412. |
[15] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||