电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 19-31. doi: 10.13208/j.electrochem.181246
董庆雨1, 褚艳丽1, 沈炎宾1,*(), 陈立桅1,2,*()
收稿日期:
2019-06-03
修回日期:
2019-11-12
出版日期:
2020-02-28
发布日期:
2020-01-16
通讯作者:
沈炎宾,陈立桅
E-mail:ybshen2017@sinano.ac.cn;lwchen2008@sinano.ac.cn
基金资助:
DONG Qing-yu1, CHU Yan-li1, SHEN Yan-bin1,*(), CHEN Li-wei1,2,*()
Received:
2019-06-03
Revised:
2019-11-12
Published:
2020-02-28
Online:
2020-01-16
Contact:
SHEN Yan-bin,CHEN Li-wei
E-mail:ybshen2017@sinano.ac.cn;lwchen2008@sinano.ac.cn
摘要:
近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义.
中图分类号:
董庆雨, 褚艳丽, 沈炎宾, 陈立桅. 原子力显微镜在锂离子电池界面研究中的应用[J]. 电化学(中英文), 2020, 26(1): 19-31.
DONG Qing-yu, CHU Yan-li, SHEN Yan-bin, CHEN Li-wei. Atomic Force Microscopic Characterization of Solid Electrolyte Interphase in Lithium Ion Batteries[J]. Journal of Electrochemistry, 2020, 26(1): 19-31.
[1] | Dey A N . Film formation on lithium anode in propylene carbonate[J]. Journal of The Electrochemical Society, 1970, 117(8): C248-&. |
[2] | Peled E . The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems the solid electrolyte interphase model[J]. Journal of The Electrochemical Society, 1979,126(12):2047-2051. |
[3] | Peled E, Golodnitsky D, Ardel G . Advanced model for solid electrolyte interphase electrodes in liquid and polymerelectrolytes[J]. Journal of The Electrochemical Society, 1997,144(8):L208-L210. |
[4] | Aurbach D, Markovsky B, Levi M D , et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999,81:95-111. |
[5] | Li H, Huang X J, Chen L Q . Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid State Letters, 1998,1(6):241-243. |
[6] |
Wang Q, Li H, Chen L Q , et al. Investigation of lithium storage in bamboo-like CNTs by HRTEM[J]. Journal of the Electrochemical Society, 2003,150(9):A1281-A1286.
doi: 10.1149/1.1600463 URL |
[7] |
Zhong K F, Xia X, Zhang B , et al. MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources, 2010,195(10):3300-3308.
doi: 10.1021/acsami.5b12840 URL pmid: 26881741 |
[8] |
Cheng X B, Zhang R, Zhao C Z , et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016,3(3):1500213.
doi: 10.1002/advs.201500213 URL pmid: 27774393 |
[9] | Choi N S, Yew K H, Lee K Y , et al. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources, 2006,161(2):1254-1259. |
[10] | He Y B, Liu M, Huang Z D , et al. Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries[J]. Journal of Power Sources, 2013,239:269-276. |
[11] |
Li N W, Yin Y X, Yang C P , et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016,28(9):1853-1858.
doi: 10.1002/adma.201504526 URL pmid: 26698171 |
[12] | Peled E, Menachem C, Bartow D , et al. Improved graphite anode for lithium-ion batteries Chemically bonded solid electrolyte interface and nanochannel formation[J]. Journal of The Electrochemical Society, 1996,143(1):L4-L7. |
[13] |
Sazhin S V, Gering K L, Harrup M K , et al. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes and Solid Electrolyte Interphases[J]. Journal of The Electrochemical Society, 2014,161(3):A393-A402.
doi: 10.1149/2.043403jes URL |
[14] | Broussely M, Herreyre S, Biensan P , et al. Aging mechanism in Li ion cells and calendar life predictions[J]. Journal of Power Sources, 2001, 97-98:13-21. |
[15] | Wang F M, Wang H Y, Yu M H , et al. Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery[J]. Journal of Power Sources, 2011,196(23):10395-10400. |
[16] | Yang D J, Zhao H L, Wang J P , et al. Effects of constant voltage at low potential on the formation of LiMnO2/graphite lithium ion battery[J]. Journal of Solid State Electrochemistry, 2014,18(7):1907-1914. |
[17] | Schmitz R W, Murmann P, Schmitz R , et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods[J]. Progress in Solid State Chemistry, 2014,42(4):65-84. |
[18] | Xu C, Lindgren F, Philippe B , et al. Improved performance of the silicon anode for li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015,27(7):2591-2599. |
[19] | Xu M Q, Zhou L, Hao L S , et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2011,196(16):6794-6801. |
[20] | Zhang X Q, Cheng X B, Chen X , et al. Fluoroethylene carbonate additives to render uniform li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017,27(10):1605989. |
[21] | Ota H, Sakata Y, Inoue A , et al. Analysis of vinylene carbonate derived SEI layers on graphite anode[J]. Journal of The Electrochemical Society, 2004,151(10):A1659-A1669. |
[22] | Nowak S, Winter M . Review-chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned[J]. Journal of The Electrochemical Society, 2015,162(14):A2500-A2508. |
[23] |
Haregewoin A M, Wotango A S, Hwang B J . Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016,9(6):1955-1988.
doi: 10.1021/acs.accounts.7b00402 URL pmid: 28981258 |
[24] | Delp S A, Borodin O, Olguin M , et al. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochimica Acta, 2016,209:498-510. |
[25] | Ein-Eli Y . A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells[J]. Electrochemical and Solid State Letters, 1999,2(5):212-214. |
[26] | Malmgren S, Ciosek K, Hahlin M , et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta, 2013,97:23-32. |
[27] |
Sacci R L, Dudney N J, More K L , et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy[J]. Chemical Communications, 2014,50(17):2104-2107.
doi: 10.1039/c3cc49029g URL pmid: 24413070 |
[28] |
Tang C Y, Haasch R T, Dillon S J . In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling[J]. Chemical Communications, 2016,52(90):13257-13260.
doi: 10.1039/c6cc08176b URL pmid: 27775104 |
[29] |
Li W D, Dolocan A, Oh P , et al. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries[J]. Nature Communications, 2017,8:14589.
doi: 10.1038/ncomms14589 URL pmid: 28443608 |
[30] | Besenhard J O, Winter M, Yang J , et al. Filming mechanism of ithium-carbon anodes in organic and inorganic electrolytes[J]. Journal of Power Sources, 1995,54(2):228-231. |
[31] | Lee S H, You H G, Han K S , et al. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources, 2014,247:307-313. |
[32] |
Strelcov E, Cothren J, Leonard D , et al. In situ SEM study of lithium intercalation in individual V2O5 nanowires[J]. Nanoscale, 2015,7(7):3022-3027.
doi: 10.1039/c4nr06767c URL pmid: 25600354 |
[33] | Joshi T, Eom K, Yushin G , et al. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2014,161(12):A1915-A1921. |
[34] | Etiemble A, Tranchot A, Douillard T , et al. Evolution of the 3D Microstructure of a Si-based electrode for Li-ion batteries investigated by FIB/SEM tomography[J]. Journal of The Electrochemical Society, 2016,163(8):A1550-A1559. |
[35] | Bordes A, Eom K, Fuller T F . The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources, 2014,257:163-169. |
[36] | Leblebici S Y, Leppert L, Li Y , et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite[J]. Nature Energy, 2016,1:16093. |
[37] |
Jiang K Z, Zhao D D, Guo S J , et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires[J]. Science Advances, 2017,3(2):e1601705.
doi: 10.1126/sciadv.1601705 URL pmid: 28275723 |
[38] |
Rohm H, Leonhard T, Hoffmannbc M J , et al. Ferroelectric domains in methylammonium lead iodide perovskite thin-films[J]. Energy & Environmental Science, 2017,10(4):950-955.
doi: 10.1002/adma.201806661 URL pmid: 30785225 |
[39] |
Liu Y H, Zhao J B, Li Z K , et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communications, 2014,5:5293.
doi: 10.1038/ncomms6293 URL pmid: 25382026 |
[40] |
Chen Q, Mao L, Li Y W , et al. Quantitative operando visualization of the energy band depth profile in solar cells[J]. Nature Communications, 2015,6:7745.
doi: 10.1038/ncomms8745 URL pmid: 26166580 |
[41] |
Dazzi A, Prater C B, Hu Q C , et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization[J]. Applied Spectroscopy, 2012,66(12):1365-1384.
doi: 10.1366/12-06804 URL pmid: 23231899 |
[42] |
Lu F, Jin M Z, Belkin M A . Tip-enhanced infrared nanospectroscopy via molecular expansion force detection[J]. Nature Photonics, 2014,8(4):307-312.
doi: 10.1038/NPHOTON.2013.373 URL |
[43] |
Barbosa E F, Silva L P . Nanoscale characterization of synthetic polymeric porous membranes: Scrutinizing their stiffness, roughness, and chemical composition[J]. Journal of Membrane Science, 2012,407:128-135.
doi: 10.1016/j.memsci.2012.03.025 URL |
[44] |
Tang F G, Bao P T, Su Z H . Analysis of nanodomain composition in high-impact polypropylene by atomic force microscopy-infrared[J]. Analytical Chemistry, 2016,88(9):4926-4930.
doi: 10.1021/acs.analchem.6b00798 URL pmid: 27075757 |
[45] |
Brown P S, Bhushan B . Durable, superoleophobic polymer-nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation[J]. Scientific Reports, 2016,6:21048.
doi: 10.1038/srep21048 URL pmid: 26876479 |
[46] | Akyildiz H I, Lo M, Dillon E , et al. Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers[J]. Journal of Materials Research, 2014,29(23):2817-2826. |
[47] |
Brown L V, Davanco M, Sun Z Y , et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures[J]. Nano Letters, 2018,18(3):1628-1636.
doi: 10.1021/acs.nanolett.7b04476 URL pmid: 29451802 |
[48] | Coletta C, Cui Z P, Dazzi A , et al. A pulsed electron beam synjournal of PEDOT conducting polymers by using sulfate radicals as oxidizing species[J]. Radiation Physics and Chemistry, 2016,126:21-31. |
[49] | Cohen Y S, Aurbach D . Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochemistry Communications, 2004,6(6):536-542. |
[50] | Swiatowska-Mrowlecka J, Maurice V, Klein L , et al. Nanostructural modifications of V2O5 thin films during Li intercalation studied in situ by AFM[J]. Electrochemistry Communications, 2007,9(9):2448-2455. |
[51] | Vidu R, Quinlan F T, Stroeve P . Use of in situ electrochemical atomic force microscopy (EC-AFM) to monitor cathode surface reaction in organic electrolyte[J]. Industrial & Engineering Chemistry Research, 2002,41(25):6546-6554. |
[52] | Doi T, Inaba M, Tsuchiya H , et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures[J]. Journal of Power Sources, 2008,180(1):539-545. |
[53] | Ayache M, Jong D, Syzdek J , et al. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode[J]. Journal of The Electrochemical Society, 2015,162(13):A7078-A7082. |
[54] |
Ayache M, Lux S F, Kostecki R . IR near-field study of the solid electrolyte interphase on a tin electrode[J]. Journal of Physical Chemistry Letters, 2015,6(7):1126-1129.
doi: 10.1021/acs.jpclett.5b00263 URL pmid: 26262960 |
[55] |
Verde M G, Baggetto L, Balke N , et al. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale[J]. ACS Nano, 2016,10(4):4312-4321.
doi: 10.1021/acsnano.5b07875 URL pmid: 26978597 |
[56] | Giessibl F J . Advances in atomic force microscopy[J]. Reviews of Modern Physics, 2003,75(3):949-983. |
[57] |
Erlandsson R, Olsson L, Martensson P . Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7x7[J]. Physical Review B, 1996,54(12):R8309-R8312.
doi: 10.1103/physrevb.54.r8309 URL pmid: 9984582 |
[58] |
Chen L W, Yu X C, Wang D . Cantilever dynamics and quality factor control in AC mode AFM height measurements[J]. Ultramicroscopy, 2007,107(4/5):275-280.
doi: 10.1016/j.ultramic.2006.06.006 URL pmid: 17157439 |
[59] |
Chen X, Lai J Q, Shen Y B , et al. Functional scanning force microscopy for energy nanodevices[J]. Advanced Materials, 2018,30(48):1802490.
doi: 10.1002/adma.201802490 URL pmid: 30133000 |
[60] |
Domke J, Radmacher M . Measuring the elastic properties of thin polymer films with the atomic force microscope[J]. Langmuir, 1998,14(12):3320-3325.
doi: 10.1021/la9713006 URL |
[61] |
Lu W, Zhang J S, Xu J J , et al. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling[J]. ACS Applied Materials & Interfaces, 2017,9(22):19313-19318.
doi: 10.1021/acsami.7b03024 URL pmid: 28497948 |
[62] | Li L( 李丽), Xu J J( 许晶晶), Han S J( 韩少杰 ), et al. Interfacial property between high-voltage LiNi0.5Mn1.5O4 cathode and electrolyte[J]. Journal of Electrochemistry( 电化学), 2016,22(6):582-589. |
[63] |
Zhang J, Wang R, Yang X C , et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012,12(4):2153-2157.
doi: 10.1021/nl300570d URL |
[64] |
Zheng J Y, Zheng H, Wang R , et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2014,16(26):13229-13238.
doi: 10.1039/c4cp01968g URL |
[65] |
Zhang J, Yang X C, Wang R , et al. Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy[J]. Journal of Physical Chemistry C, 2014,118(36):20756-20762.
doi: 10.1021/jp503953n URL |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 方建军, 杜宇豪, 李子健, 樊文光, 任恒宇, 易浩聪, 赵庆贺, 潘锋. 高电压LiCoO2的表面结构与性能:回顾与展望[J]. 电化学(中英文), 2024, 30(6): 2314005-. |
[3] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[4] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[5] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[6] | 庄永斌, 程俊. 基于从头算分子动力学的金属/氧化物-水界面能带排列[J]. 电化学(中英文), 2023, 29(7): 2216001-. |
[7] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[8] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[9] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[10] | 乔行, 朱勇, 孙升, 张统一. 电解液中Cu(111)晶面电溶解/沉积势垒施加电荷相关性的跨尺度计算[J]. 电化学(中英文), 2023, 29(10): 2205171-. |
[11] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[12] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[13] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[14] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[15] | 张滟滟, 刘越, 陆一鸣, 于沛平, 杜文轩, 麻冰云, 谢淼, 杨昊, 程涛. 多尺度模拟研究溶质调控下电解液在锂金属电极上的分解机理[J]. 电化学(中英文), 2022, 28(4): 2105181-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||