电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 162-174. doi: 10.13208/j.electrochem.191141
收稿日期:
2019-11-20
修回日期:
2019-11-27
出版日期:
2020-04-28
发布日期:
2019-12-04
通讯作者:
夏长荣
E-mail:xiacr@ustc.edu.cn
基金资助:
Received:
2019-11-20
Revised:
2019-11-27
Published:
2020-04-28
Online:
2019-12-04
Contact:
XIA Chang-rong
E-mail:xiacr@ustc.edu.cn
摘要:
固体氧化物电解池是一种高效、环境友好型的能量转换器件,可以直接将电能转化为化学能. 本文介绍了近年来作者课题组在固体氧化物电解池直接用于CO2还原的研究进展,并以阴极材料为主着重讨论了金属陶瓷电极和混合导电型钙钛矿氧化物电极的研究工作,最后展望了未来固体氧化物电解池直接电解CO2的研究思路和方向.
中图分类号:
李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174.
LI Yi-hang, XIA Chang-rong. Recent Advances of CO2 Electrochemical Reduction in Solid Oxide Electrolysis Cells[J]. Journal of Electrochemistry, 2020, 26(2): 162-174.
表1
以Ni-YSZ为阴极的单电池在1.3 V电压电解CO2的性能比较
Cell component | Temperature/oC | Inlet gas | Current density/ (A·cm-2) | Ref. |
---|---|---|---|---|
Ni-YSZ//YSZ//La0.8Sr0.2MnO3-δ-YSZ | 800 | 70%CO2-30%CO | 0.27 | [27] |
BaCO3-Ni-YSZ//YSZ//La0.8Sr0.2MnO3-δ-YSZ | 800 | 70%CO2-30%CO | 0.55 | [27] |
Ni-YSZ//YSZ//(La0.75Sr0.25)0.95MnO3-YSZ | 850 | 70%CO2-30%CO | 1.05 | [19] |
Ni-YSZ//YSZ// La0.8Sr0.2MnO3-δ-YSZ | 750 | 90%CO2-10%CO | 0.3 | [20] |
Ni-YSZ//YSZ// La0.8Sr0.2MnO3-δ-YSZ | 800 | 90%CO2-10%CO | 0.7 | [31] |
Ni-YSZ//YSZ//(La0.75Sr0.25)0.95MnO3-YSZ | 1000 | 34%CO2-66%CO | 0.25 | [32] |
Ni-YSZ//YSZ//PrBaCo2O5+δ-GDC | 700 | 67%CO2-33%CO | 1.1 | [30] |
表3
以不同钙钛矿氧化物为阴极的单电池在1.5 V电压电解CO2的性能比较
Cell component | Temperature/ oC | Inlet gas | Current density/ (A·cm-2) | Ref. |
---|---|---|---|---|
La0.2Sr0.8TiO3+δ-GDC//YSZ//(La0.8Sr0.2)0.95MnO3-δ-GDC | 700 | CO2 | 0.05 | [33] |
La0.2Sr0.8Ti0.9Mn0.1O3+δ//YSZ//(La0.8Sr0.2)0.95MnO3-δ-SDC | 800 | CO2 | 0.15 | [35] |
La0.75Sr0.25Cr0.5Mn0.5O3-δ-SDC//YSZ//La0.75Sr0.25Cr0.5Mn0.5O3-δ-SDC | 800 | CO2 | 0.09 | [36] |
La0.75Sr0.25Cr0.5Mn0.5O3-δ-GDC//YSZ//La0.8Sr0.2MnO3-δ-ScSZ | 800 | 70%CO2-30%CO | 0.16 | [37] |
LSF//LSGM//LSCF-SDC | 800 | CO2 | 0.76 | [39] |
SFM//LSGM//LSCF-SDC | 800 | CO2 | 0.71 | [48] |
SFM-SDC//LSGM//LSCF-SDC | 800 | CO2 | 1.09 | [48] |
La0.6Sr0.4Fe0.8Mn0.2O3-δ//LSGM//Ba0.6La0.4CoO3-δ | 800 | 50%CO2-1%CO-49%Ar | 0.21 | [53] |
La0.3Sr0.7Fe0.7Cr0.3O3-δ//YSZ//La0.3Sr0.7Fe0.7Cr0.3O3-δ | 800 | 90%CO2-10%CO | 0.32 | [43] |
La0.65Sr0.3Ce0.05Fe0.7Cr0.3O3-δ-YSZ//YSZ//LSCF-GDC | 800 | 70%CO2-30%CO | 0.47 | [54] |
La0.7Sr0.3Fe0.7Ti0.3O3-δ//YSZ//La0.7Sr0.3Fe0.7Ti0.3O3-δ | 800 | CO2 | 0.28 | [45] |
La0.6Sr0.4Fe0.8Mn0.2O3-δ//YSZ//La0.6Sr0.4Fe0.8Mn0.2O3-δ | 800 | CO2 | 0.58 | [41] |
La0.6Sr0.4Fe0.8Mn0.2O3-δ//YSZ// LSCF-GDC | 800 | 70%CO2-30%CO | 0.75 | [42] |
La0.5Sr0.5Fe0.95V0.05O3-δ-GDC//YSZ//La(Sr)MnO3-δ-YSZ | 800 | 95%CO2-5%N2 | 0.55 | [46] |
[1] | Zhang L X, Hu S Q, Zhu X F , et al. Electrochemical reduction of CO2 in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2017,26(4):593-601. |
[2] | Chen L, Chen F L, Xia C R . Direct synjournal of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells[J]. Energy & Environmental Science, 2014,7(12):4018-4022. |
[3] | Kondratenko E V, Mul G, Baltrusaitis J , et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science, 2013,6(11):3112-3135. |
[4] | Graves C, Ebbesen S D, Mogensen M , et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy[J]. Renewable and Sustainable Energy Reviews, 2011,15(1):1-23. |
[5] |
Zheng Y, Wang J C, Yu B , et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology[J]. Chemical Society Reviews, 2017,46(5):1427-1463.
doi: 10.1039/C6CS00403B URL |
[6] |
Ebbesen S D, Jensen S H, Hauch A , et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014,114(21):10697-10734.
doi: 10.1021/cr5000865 URL |
[7] | Sridhar K R, Vaniman B T . Oxygen production on Mars using solid oxide electrolysis[J]. Solid State Ionics, 1997,93(3/4):321-328. |
[8] | Guan J, Doshi R, Lear G , et al. Ceramic oxygen generators with thin-film zirconia electrolytes[J]. Journal of the Ame-rican Ceramic Society, 2002,85(11):2651-2654. |
[9] |
Stempien J P, Liu Q L. Ni, M. , et al. Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a solid oxide electrolyzer cell (SOEC)[J]. Electrochimica Acta, 2014,147:490-497.
doi: 10.1016/j.electacta.2014.09.144 URL |
[10] | Hansen J B . Solid oxide electrolysis - a key enabling technology for sustainable energy scenarios[J]. Faraday Discussions, 2015,182:9-48. |
[11] | Cheng C Y, Kelsall G H, Kleiminger L . Reduction of CO2 to CO at Cu-ceria-gadolinia (CGO) cathode in solid oxide electrolyser[J]. Journal of Applied Electrochemistry, 2013,43(11):1131-1144. |
[12] | Wang S J, Inoishi A, Hong J , et al. Ni-Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte[J]. Journal of Materials Chemistry A, 2013,1(40):12455-12461. |
[13] | Wang Y, Liu T, Lei L B , et al. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production[J]. Fuel Processing Technology, 2017,161:248-258. |
[14] | Zhang Y, Knibbe R, Sunarso J , et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C[J]. Advanced Materials, 2017,29(48):1700132. |
[15] |
Tao G, Sridhar K R, Chan C L . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part I. Pt/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):615-619.
doi: 10.1016/j.ssi.2004.01.077 URL |
[16] | Tao G, Sridhar K R, Chan C L . Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface[J]. Solid State Ionics, 2004,175(1/4):621-624. |
[17] | Xie Y M, Xiao J, Liu D D , et al. Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode[J]. Journal of The Electrochemical Society, 2015,162(4):F397-F402. |
[18] |
Green R D, Liu C C, Adler S B . Carbon dioxide reduction on gadolinia-doped ceria cathodes[J]. Solid State Ionics, 2008,179(17/18):647-660.
doi: 10.1016/j.ssi.2008.04.024 URL |
[19] | Ebbesen S D, Mogensen M . Electrolysis of carbon dioxide in solid oxide electrolysis cells[J]. Journal of Power Sources, 2009,193(1):349-358. |
[20] | Kleiminger L, Li T, Li K , et al. CO2 splitting into CO and O2 in micro-tubular solid oxide electrolysers[J]. RSC Advances, 2014,4(91):50003-50016. |
[21] | Dong D H, Xu S S, Shao X , et al. Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas[J]. Journal of Materials Chemistry A, 2017,5(46):24098-24102. |
[22] |
Luo Y, Li W Y, Shi Y X , et al. Mechanism for reversible CO/CO2 electrochemical conversion on a patterned nickel electrode[J]. Journal of Power Sources, 2017,366:93-104.
doi: 10.1016/j.jpowsour.2017.09.019 URL |
[23] |
Nepomuceno M A, Kato Y . Development of disk-type solid oxide electrolysis cell for CO2 reduction in an active carbon recycling energy system[J]. Energy Procedia, 2017,131:101-107.
doi: 10.1016/j.egypro.2017.09.480 URL |
[24] | Skafte T L, Blennow P, Hjelm J , et al. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes[J]. Journal of Power Sour-ces, 2018,373:54-60. |
[25] |
Song Y F, Zhang X M, Zhou Y J , et al. Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer[J]. Energy Storage Materials, 2018,13:207-214.
doi: 10.1016/j.ensm.2018.01.013 URL |
[26] | Yu L B, Wang J J, Ye Z M , et al. Electrochemical conversion of CO2 over microchanneled cathode supports of solid oxide electrolysis cells[J]. Journal of CO2 Utilization, 2018,26:179-183. |
[27] | Zheng M H, Wang S, Yang Y , et al. Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2018,6(6):2721-2729. |
[28] | Yu L B, Wang J J, Hu X , et al. A nanocatalyst network for electrochemical reduction of CO2 over microchanneled solid oxide electrolysis cells[J]. Electrochemistry Communications, 2018,86:72-75. |
[29] |
Song Y F, Zhou Z W, Zhang X M , et al. Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell[J]. Journal of Materials Chemistry A, 2018,6(28):13661-13667.
doi: 10.1039/C8TA02858C URL |
[30] |
Liu T, Chen X, Wu J J , et al. A highly-performed, dual-layered cathode supported solid oxide electrolysis cell for efficient CO2 electrolysis fabricated by phase inversion co-tape casting method[J]. Journal of The Electrochemical Society, 2017,164(12):F1130-F1135.
doi: 10.1149/2.0841712jes URL |
[31] | Kleiminger L, Kelsall G H, Li T , et al. Effects of current collector materials on performances of micro-tubular solid oxide electrolysers for splitting CO2[J]. High Temperature Experimental Techniques and Measurements, 2015,68(1):3449-3458. |
[32] |
Singh V, Muroyama H, Matsui T , et al. Performance and stability of solid oxide electrolysis cell for CO2 reduction under various operating conditions[J]. Electrochemistry, 2014,82(10):839-844.
doi: 10.5796/electrochemistry.82.839 URL |
[33] |
Li S S, Li Y X, Gan Y , et al. Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3+δ composite cathode[J]. Journal of Power Sources, 2012,218:244-249.
doi: 10.1016/j.jpowsour.2012.06.046 URL |
[34] |
Li Y X, Zhou J E, Dong D H , et al. Composite fuel electrode La0.2Sr0.8TiO3-δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser[J]. Physical Chemistry Chemical Physics, 2012,14(44):15547-15553.
doi: 10.1039/c2cp42232h URL |
[35] |
Qi W T, Gan Y, Yin D ., et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis[J]. Journal of Materials Chemistry A, 2014,2(19):6904-6915.
doi: 10.1039/c4ta00344f URL |
[36] | Xu S S, Li S S, Yao W T , et al. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode[J]. Journal of Power Sources, 2013,230:115-121. |
[37] |
Yue X L, Irvine J T S . (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis[J]. Solid State Ionics, 2012,225:131-135.
doi: 10.1016/j.ssi.2012.06.015 URL |
[38] | Yue X L, Irvine J T S . Modification of LSCM-GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs)[J]. Journal of Materials Chemistry A, 2017,5(15):7081-7090. |
[39] |
Yang Y, Li Y H, Jiang Y A , et al. The electrochemical performance and CO2 reduction mechanism on strontium doped lanthanum ferrite fuel electrode in solid oxide electrolysis cell[J]. Electrochimica Acta, 2018,284:159-167.
doi: 10.1016/j.electacta.2018.07.187 URL |
[40] | Wang S J, Tsuruta H, Asanuma M , et al. Ni-Fe-La(Sr)Fe-(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte[J]. Advanced Energy Materials, 2015,5(2):1401003. |
[41] | Tian Y F, Zheng H Y, Zhang L L , et al. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode[J]. Journal of The Electrochemical Society, 2018,165(2):F17-F23. |
[42] | Liu SBA, Liu Q X, Luo J L . The excellence of La(Sr)Fe-(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures[J]. Journal of Materials Chemistry A, 2017,5(6):2673-2680. |
[43] |
Addo P, Molero-Sanchez B, Chen M , et al. CO/CO2 study of high performance La0.3Sr0.7Fe0.7Cr0.3O3-δ reversible SOFC electrodes[J]. Fuel Cells, 2015,15(5):689-696.
doi: 10.1002/fuce.v15.5 URL |
[44] |
Molero-Sánchez B, Addo P, Buyukaksoy A , et al. Electrochemistry of La0.3Sr0.7Fe0.7Cr0.3O3-δ as an oxygen and fuel electrode for RSOFCs[J]. Faraday Discussions, 2015,182:159-175.
doi: 10.1039/C5FD00029G URL |
[45] |
Cao Z Q, Wei B, Miao J P , et al. Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material[J]. Electrochemistry Communications, 2016,69:80-83.
doi: 10.1016/j.elecom.2016.06.008 URL |
[46] |
Zhou Y J, Zhou Z W, Song Y F , et al. Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell[J]. Nano Energy, 2018,50:43-51.
doi: 10.1016/j.nanoen.2018.04.054 URL |
[47] |
Wang Y, Liu T, Fang S M , et al. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes[J]. Journal of Power Sources, 2016,305:240-248.
doi: 10.1016/j.jpowsour.2015.11.097 URL |
[48] | Li Y H, Chen X R, Yang Y , et al. Mixed-conductor Sr2Fe1.5Mo0.5O6-δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell[J]. ACS Sustainable Chemistry & Engineering, 2017,5(12):11403-11412. |
[49] | Li Y H, Zou S X, Ju J W , et al. Characteristics of nano-structured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells[J]. Solid State Ionics, 2018,319:98-104. |
[50] | Li Y H, Zhan Z L, Xia C R . Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes[J]. Catalysis Science & Technology, 2018,8(4):980-984. |
[51] | Adler S B, Lane J, Steele B . Electrode kinetics of porous mixed-conducting oxygen electrodes[J]. Journal of The Electrochemical Society, 1996,143(11):3554-3564. |
[52] |
Tao S W, Irvine J T S . A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003,2(5):320-323.
doi: 10.1038/nmat871 URL |
[53] | Wang S J, Ishihara T . La0.6Sr0.4Fe0.9Mn0.1O3 oxide cathode for the high temperature CO2 electrolysis using LSGM electrolyte[J]. High Temperature Experimental Techniques and Measurements, 2013,57(1):3171-3176. |
[54] | Zhang Y Q, Li J H, Sun Y F , et al. Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs[J]. Acs Applied Materials & Interfaces, 2016,8(10):6457-6463. |
[55] | Ding D, Li X X, Lai S Y , et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy & Environmental Science, 2014,7(2):552-575. |
[56] |
Huang H, Lin J, Wang Y L , et al. Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method[J]. Journal of Power Sources, 2015,274:1114-1117.
doi: 10.1016/j.jpowsour.2014.10.190 URL |
[57] | Li Y H, Li P, Hu B B , et al. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas[J]. Journal of Materials Chemistry A, 2016,4(23):9236-9243. |
[58] |
Neagu D, Oh T S, Miller D N , et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications, 2015,6:8120.
doi: 10.1038/ncomms9120 URL |
[59] |
Neagu D, Tsekouras G, Miller D N , et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013,5(11):916-923.
doi: 10.1038/nchem.1773 URL |
[60] |
Neagu D, Papaioannou E I, Ramli W K W , et al. Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles[J]. Nature Communications, 2017,8(1):1855.
doi: 10.1038/s41467-017-01880-y URL |
[61] | Lai K Y, Manthiram A . Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells[J]. Chemistry of Materials, 2018,30(8):2515-2525. |
[62] | Li Y H, Hu B B, Xia C R , et al. A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance[J]. Journal of Materials Chemistry A, 2017,5(39):20833-20842. |
[63] | Opitz A K, Nenning A, Rameshan C , et al. Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy[J]. ACS Applied Materials & Interfaces, 2017,9(41):35847-35860. |
[64] | Feng Z L A, Machala M L, Chueh W C . Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2-x: coupling between Ce 3+ and carbonate adsorbates [J]. Physical Chemistry Chemical Physics, 2015,17(18):12273-12281. |
[65] |
Yu Y, Mao B H, Geller A , et al. CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells[J]. Physical Chemistry Chemical Physics, 2014,16(23):11633-11639.
doi: 10.1039/C4CP01054J URL |
[66] |
Duboviks V, Maher R, Kishimoto M , et al. A Raman spe-ctroscopic study of the carbon deposition mechanism on Ni/CGO electrodes during CO/CO2 electrolysis[J]. Physical Chemistry Chemical Physics, 2014,16(26):13063-13068.
doi: 10.1039/c4cp01503g URL |
[67] |
Itoh T, Abe K, Dokko K , et al. In situ Raman spectroelectrochemistry of oxygen species on gold electrodes in high temperature molten carbonate melts[J]. Journal of The Electrochemical Society, 2004,151(12):A2042-A2046.
doi: 10.1149/1.1812735 URL |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[3] | 汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔. 多孔陶瓷支撑型管式固体氧化物电解池性能研究[J]. 电化学(中英文), 2023, 29(12): 2204131-. |
[4] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[5] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[6] | 杜立群, 温义奎, 关发龙, 翟科, 叶作彦, 王超. 移动阴极式掩膜电解加工微沟槽阵列均匀性研究[J]. 电化学(中英文), 2021, 27(6): 658-670. |
[7] | 董文霞, 温广明, 刘斌, 李忠平. 基于Zr-MOFs光电化学传感用于同型半胱氨酸的检测[J]. 电化学(中英文), 2021, 27(6): 681-688. |
[8] | 王伟国, 白天, 薛高飞, 叶美丹. CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学(中英文), 2021, 27(2): 216-226. |
[9] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[10] | 邓博文, 尹华意, 汪的华. CO2高效资源化利用的高温熔盐电化学技术研究[J]. 电化学(中英文), 2020, 26(5): 628-638. |
[11] | 叶灵婷, 谢奎. 氧离子传导型固体氧化物电解池燃料电极的研究进展[J]. 电化学(中英文), 2020, 26(2): 253-261. |
[12] | 韦童, 李箭, 贾礼超, 池波, 蒲健. 钙钛矿材料在固体氧化物燃料电池燃料重整中的应用[J]. 电化学(中英文), 2020, 26(2): 198-211. |
[13] | 鲍晓囡, 张广君, 王绍荣. 阴极支撑型固体氧化物燃料电池的制备与测试[J]. 电化学(中英文), 2020, 26(2): 190-197. |
[14] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[15] | 郑志林,袁晓姿,尹屹梅,马紫峰. 燃料电池反应器在化学品与电能共生中应用[J]. 电化学(中英文), 2018, 24(6): 615-627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||