[1] Lewis N S. Toward cost-effective solar energy use[J]. Science, 2007, 315(5813): 798-801.
[2] Obama B. The irreversible momentum of clean energy[J]. Science, 2017, 355(6321): 126-129.
[3] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
[4] Gray H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009, 1(1): 7.
[5] Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502.
[6] Zhong Y, Xia X H, Shi F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced Science, 2016, 3(5): UNSP 1500286.
[7] Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2015, 5(24): 1500985.
[8] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[9] Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.
[10] Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J]. Science, 2008, 321(5892): 1072-1075.
[11] Deng X, Tüysüz H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges[J]. ACS Catalysis, 2014, 4(10): 3701-3714.
[12] McCrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987.
[13] McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
[14] Jia Y, Zhang L, Gao G, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials, 2017, 29(17): 1700017.
[15] Tang T, Jiang W J, Niu S, et al. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping towards highly efficient and stable bifunctional electrocatalysts for overall water splitting[J]. Journal of the American Chemical Society, 2017, 139(24): 8320-8328.
[16] Zeng M, Li Y G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(29): 14942-14962.
[17] Li J, Zheng G F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Advanced Science, 2017, 4(3): 1600380.
[18] Zhuang Z C, Li Y, Li Z L, et al. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(2): 496-500.
[19] Zhang R, Wang X X, Yu S J, et al. Ternary NiCO2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction[J]. Advanced Materials, 2017, 29(9): UNSP 1605502.
[20] Chen Y Y, Zhang Y, Zhang X, et al. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution[J]. Advanced Materials, 2017, 29(39): 1703311.
[21] Deng J, Li H B, Wang S H, et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nature Communications, 2017, 8: 14430.
[22] Yin Q, Tan J M, Besson C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals[J]. Science, 2010, 328(5976): 342-345.
[23] Zhao Y, Jia X, Waterhouse G I N, et al. Layered double hydroxide nanostructured photocatalysts for renewable energy production[J]. Advanced Energy Materials, 2016, 6(6): 1501974.
[24] Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts[J]. Nature materials, 2012, 11(6): 550-557.
[25] Zhao Y, Nakamura R, Kamiya K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nature Communications, 2013, 4: 2390.
[26] Chen D, Chen C, Baiyee Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chemical Reviews, 2015, 115(18): 9869-9921.
[27] Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014, 5: 4477.
[28] Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.
[29] Long X, Li J K, Xiao S, et al. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 29(53): 7584-7588.
[30] Yeo B S, Bell A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011, 133(14): 5587-5593.
[31] Grimaud A, May K J, Carlton C E, et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nature Communications, 2013, 4: 2439.
[32] Gerken J B, McAlpin J G, Chen J Y, et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: The thermodynamic basis for catalyst structure, stability, and activity[J]. Journal of the American Chemical Society, 2011, 133(36): 14431-14442.
[33] Li Y, Hasin P, Wu Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution[J]. Advanced Materials, 2010, 22(17): 1926-1929.
[34] Wee T L, Sherman B D, Gust D, et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures[J]. Journal of the American Chemical Society, 2011, 133(42): 16742-16745.
[35] Trotochaud L, Ranney J K, Williams K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society, 2012, 134(41): 17253-17261.
[36] Song F, Schenk K, Hu X. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes[J]. Energy & Environmental Science, 2016, 9(2): 473-477.
[37] Tang C, Cheng N, Pu Z, et al. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355.
[38] Liu Y, Cheng H, Lyu M, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation[J]. Journal of the American Chemical Society, 2014, 136(44): 15670-15675.
[39] Gao M R, Xu Y F, Jiang J, et al. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite[J]. Journal of the American Chemical Society, 2012, 134(6): 2930-2933.
[40] Zhao S, Jin R, Abroshan H, et al. Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface[J]. Journal of the American Chemical Society, 2017, 139(3): 1077-1080.
[41] Zhang Y, Ouyang B, Xu J, et al. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution[J]. Angewandte Chemie International Edition, 2016, 55(30): 8670-8674.
[42] Guo C, Zheng Y, Ran J, et al. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angewandte Chemie International Edition, 2017, 56(29): 8539-8543.
[43] Cui X J, Ren P J, Deng D H, et al. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energy & Environmental Science, 2016, 9(1): 123-129.
[44] Gao M R, Sheng W C, Zhuang Z B, et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst[J]. Journal of the American Chemical Society, 2014, 136(19): 7077-7084.
[45] Wang J H, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Advanced Materials, 2016, 28(2): 215-
230.
[46] Chen S, Qiao S Z. Hierarchically porous nitrogen-doped graphene-NiCO2O4 hybrid paper as an advanced electrocatalytic water-splitting material[J]. ACS Nano, 2013, 7(11): 10190-10196.
[47] Gong M, Li Y, Wang H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455.
[48] Zhao Z L, Wu H X, He H L, et al. A high-performance binary Ni-Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube array structure[J]. Advanced Functional Materials, 2014, 24(29): 4698-4705.
[49] Liu W, Liu H, Dang L N, et al. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution[J]. Advanced Functional Materials, 2017, 27(14): 1603904.
[50] Benck J D, Hellstern T R, Kibsgaard J, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2014, 4(11): 3957-3971.
[51] Jiang W J, Niu S, Tang T, et al. Crystallinity-modulated electrocatalytic activity of a nickel (II) borate thin layer on Ni3B for efficient water oxidation[J]. Angewandte Chemie International Edition, 2017, 56(23): 6572-6577.
[52] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459.
[53] Liu Y W, Xiao C, Lyu M J, et al. Ultrathin Co3S4 nano-sheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions[J]. Angewandte Chemie International Edition, 2015, 54(38): 11231-11235.
[54] Xiao C L, Li Y B, Lu X Y, et al. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Advanced Functional Materials, 2016, 26(20): 3515-3523.
[55] Peng Z, Jia D, Al-Enizi A M, et al. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts[J]. Advanced Energy Materials, 2015, 5(9): 1402031.
[56] Zheng Y R, Gao M R, Gao Q, et al. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation[J]. Small, 2015, 11(2): 182-188.
[57] Indra A, Menezes P W, Sahraie N R, et al. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides[J]. Journal of the American Chemical Society, 2014, 136(50): 17530-17536.
[58] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10274-10277.
[59] Chen P Z, Xu K, Tao S, et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Advanced Materials, 2016, 28(34): 7527-7532.
[60] Li H, Shang J, Ai Z H, et al. Efficient visible light nitrogen fixation with biobr nanosheets of oxygen vacancies on the exposed {001} facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399.
[61] Bao J, Zhang X D, Fan B, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation[J]. Angewandte Chemie International Edition, 2015, 25(54): 7399-7404.
[62] Wang Y C, Zhou T, Jiang K, et al. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes[J]. Advanced Energy Materials, 2014, 4(16): 1400696.
[63] Tong Y, Guo Y Q, Chen P Z, et al. Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity[J]. Chem, 2017, 3(5): 812-821.
[64] Huang J H, Chen J T, Yao T, et al. CoOOH nanosheets with high mass activity for water oxidation[J]. Angewandte Chemie International Edition, 2015, 54(30): 8722-8727.
[65] Su C Y, Cheng H, Li W, et al. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery[J]. Advanced Energy Materials, 2017, 7(13): 1602420.
[66] Fu G T, Yan X X, Chen Y F, et al. Boosting bifunctional oxygen electrocatalysis with 3d graphene aerogel-supported Ni/MnO particles[J]. Advanced Materials, 2018, 30(5): 1704609.
[67] Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786.
[68] Zhong D K, Sun J, Inumaru H, et al. Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes[J]. Journal of the American Chemical Society, 2009, 131(17): 6086-6087.
[69] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[70] Yong Y C, Dong X C, Chan-Park M B, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. ACS Nano, 2012, 6(3): 2394-2400.
[71] Dong X C, Xu H, Wang X W, et al. 3d graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.
[72] Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131.
[73] Miao R, He J K, Sahoo S, et al. Reduced graphene oxide supported nickel-manganese-cobalt spinel ternary oxide nanocomposites and their chemical-converted sulfide nanocomposites as efficient electrocatalysts for alkaline water splitting[J]. ACS Catalysis, 2017, 7(1): 819-832.
[74] Guo Y X, Gan L F, Shang C S, et al. A cake-style CoS2@MoS2/rGO hybrid catalyst for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(5): UNSP 1602699.
[75] Tang T, Jiang W J, Niu S, et al. Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting[J]. Advanced Functional Materials, 2018, 28(3): 1704594.
[76] Chen P Z, Xu K, Zhou T P, et al. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions[J]. Angewandte Chemie International Edition, 2016, 55(7): 2488-2492.
[77] Frydendal R, Paoli E A, Knudsen B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
[78] Hellstern T R, Benck J D, Kibsgaard J, et al. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes[J]. Advanced Energy Materials, 2016, 6(4): 1501758.
[79] Niu S, Jiang W J, Tang T, et al. Facile and scalable synthesis of robust Ni(OH)2 nanoplate arrays on NiAl foil as hierarchical active scaffold for highly efficient overall water splitting[J]. Advanced Science, 2017, 4(8): 1700084.
[80] Zhang W, Qi J, Liu K Q, et al. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation[J]. Advanced Energy Materials, 2016, 6(12): 1502489.
[81] Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Letters, 2017, 2(8): 1937-1938.
[82] Xu K, Cheng H, Liu L Q, et al. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media[J]. Nano Letters, 2017, 17(1): 578-583. |