[1] Li Y S, Cheng X, Zhang Y. Achieving High Capacity by Vanadium Substitution into Li2FeSiO4 [J]. Journal of the Electrochemical Society, 2012, 159(2): A69-A74.
[2] Li Y S, Cheng X, Zhang Y. On the delithiation mechanism of Li2FeSiO4−ySy compounds: A first-principles investigation [J]. Electrochimica Acta, 2013, 112(0): 670-677.
[3] Wei X X(魏雪霞), Yang H(杨洪), Cheng X(程璇), et al. Recent progress in vanadium modified polynionic compounds as cathode materials for lithium ion batteries[J]. Journal of Xiamen University: Natural Science(厦门大学学报:自然科学版), 2015, 54(5):643-651.
[4] Zhang L L, Sun H B, Yang X L, et al. Study on electrochemical performance and mechanism of V-doped Li2FeSiO4 cathode material for Li-ion batteries[J]. Electrochimica Acta, 2015, 152(0): 496-504.
[5] Zhang Z, Liu X, Wu Y, et al. Synthesis and Characterization of Spherical Li2Fe0.5V0.5SiO4/C Composite for High-Performance Cathode Material of Lithium-Ion Secondary Batteries [J]. Journal of the Electrochemical Society, 2015, 162(4): A737-A742.
[6] Yang H(杨洪), Zhang Y(张颖), Cheng X(程璇). Effect of vanadium substitution on structure of Li2FeSiO4/C composites [J]. Journal of electrochemistry(电化学), 2013, 19(6): 565-570.
[7] Kumar A, Jayakumar O D, Naik V M, et al. Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: A comparison between solvothermal and sol-gel methods [J]. Solid State Ionics, 2016, 294:15-20.
[8] Feng Y, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J]. Electrochimica Acta, 2009, 54(22): 5252-5256.
[9] Fu R S, Li Y S, Yang H, et al. Improved Performance of Li2FeSiO4/C Composite with Highly Rough Mesoporous Morphology [J]. Journal of the Electrochemical Society, 2013, 160(5): A3048-A3053.
[10] Zhang B, Nieuwoudt M, Easteal A J. Sol-gel route to nanocrystalline lithium metasilicate particles [J]. Journal of the American Ceramic Society, 2008, 91(6): 1927-1932.
[11] Deng C, Zhang S, Gao Y, et al. Regeneration and characterization of air-exposed Li2FeSiO4 [J]. Electrochimica Acta, 2011, 56(21): 7327-7333.
[12] Ortiz-Landeros J, Gomez-Yanez C, Pfeiffer H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II-Textural analysis and CO2-H2O sorption evaluation [J]. Journal of Solid State Chemistry, 2011, 184(8): 2257-2262.
[13] Lee S, Cha Y C, Hwang H J, et al. The effect of pH on the physicochemical properties of silica aerogels prepared by an ambient pressure drying method [J]. Materials Letters, 2007, 61(14-15):3130-3133.
[14] Zhuang Q C(庄全超), Chen Z F(陈作锋), Dong Q F(董全峰), et al. Studies of the first lithiation of graphite materials by electrochemical impedance spectroscopy[J]. Chinese Science Bulletin(科学通报), 2006, 51(9): 1055-1059.
[15] Itagaki M, Kobari N, Yotsuda S, et al. LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy [J]. Journal of Power Sources, 2005,148: 78-84.
[16] Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557.
[17] Zhang S, Deng C, Fu B, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries [J]. Journal of Electroanalytical Chemistry, 2010, 644(2): 150-154.
[18] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Applied Surface Science, 2011, 257(7): 2717-2730.
[19] Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J]. Applied Surface Science, 2010, 257(3): 887-898. |