[1] Adenier A, Chehimi M M, Gallardo I, et al. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces[J]. Langmuir, 2004, 20(19): 8243-8253.
[2] Barbier B, Pinson J, Desarmot G, et al. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites[J]. Journal of the Electrochemical Society, 1990, 137(6): 1757-1764.
[3] Downard A J. Electrochemically assisted covalent modification of carbon electrodes[J]. Electroanalysis, 2000, 12(14): 1085-1096.
[4] Bélanger D, Pinson J. Electrografting: a powerful method for surface modification[J]. Chemical Society Reviews, 2011, 40(7): 3995-4048.
[5] Deinhammer R S, Ho M, Anderegg J W, et al. Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes[J]. Langmuir, 1994, 10(4): 1306-1313.
[6] Liu J, Dong S. Grafting of diaminoalkane on glassy carbon surface and its functionalization[J]. Electrochemistry Communications, 2000, 2(10): 707-712.
[7] Holm A H, Vase K H, Winther-Jensen B, et al. Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes[J]. Electrochimica Acta, 2007, 53(4): 1680-1688.
[8] Buriez O, Labbé E, Pigeon P, et al. Electrochemical attachment of a conjugated amino–ferrocifen complex onto carbon and metal surfaces[J]. Journal of Electroanalytical Chemistry, 2008, 619–620(0): 169-175.
[9] Buriez O, Podvorica F I, Galtayries A, et al. Surface grafting of a π-conjugated amino-ferrocifen drug[J]. Journal of Electroanalytical Chemistry, 2013, 699(0): 21-27.
[10] Tanaka M, Sawaguchi T, Sato Y, et al. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives[J]. Langmuir, 2011, 27(1): 170-178.
[11] Geneste F, Moinet C. Electrochemically linking TEMPO to carbon via amine bridges[J]. New Journal of Chemistry, 2005, 29(2): 269-771.
[12] Nasraoui R, Bergamini J-F, Ababou-Girard S, et al. Sequential anodic oxidations of aliphatic amines in aqueous medium on pyrolyzed photoresist film surfaces for the covalent immobilization of cyclam derivatives[J]. Journal of Solid State Electrochemistry, 2011, 15(1): 139-146.
[13] Chrétien J-M, Ghanem M A, Bartlett P N, et al. Covalent tethering of organic functionality to the surface of glassy carbon electrodes by using electrochemical and solid-phase synthesis methodologies[J]. Chemistry a European Journal, 2008, 14(8): 2548–2556.
[14] Chrétien J-M, Ghanem M A, Bartlett P N, et al. Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres[J]. Chemistry a European Journal, 2009, 15(44): 11928-11936.
[15] Ghanem M A, Chrétien J-M, Kilburn J D, et al. Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH[J]. Bioelectrochemistry. 2009, 76(1-2): 115-125.
[16] Ghanem M A, Chrétien J-M, Pinczewska A, et al. Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies[J]. Journal of Materials Chemistry, 2008, 18(41): 4917-4927.
[17] Sosna M, Chretien J-M, Kilburn J D, et al. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilisation[J]. Physical Chemistry Chemical Physics. 2010, 12(34): 10018-10026.
[18] Pinczewska A, Sosna M, Bloodworth S, et al. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation[J]. Journal of the American Chemical Society, 2012, 134(43): 18022-18033.
[19] Groppi J, Bartlett P N, Kilburn J D. Toward the control of the creation of mixed monolayers on glassy carbon surfaces by amine oxidation[J]. Chemistry a European Journal, 2016, 22(3): 1030-1036.
[20] Baranton S, Bélanger D. Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations[J]. Journal of Physical Chemistry B, 2005, 109(51): 24401-24410.
[21] Saby C, Ortiz B, Champagne G Y, et al. Electrochemical modification of glassy carbon electrode using aromatic diazonium salts .1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups[J]. Langmuir, 1997, 13(25): 6805-6813.
[22] Ghanem M A, Kocak I, Al-Mayouf A, et al. Covalent modification of carbon nanotubes with anthraquinone by electrochemical grafting and solid phase synthesis[J]. Electrochimica Acta. 2012, 68: 74-80.
[23] Bhugun I, Savéant J M. Derivatization of surfaces and self-inhibition in irreversible electrochemical reactions - cyclic voltammetry and preparative-scale electrolysis[J]. Journal of the Electrochemical Society, 1995, 395: 127-131.
[24] Allongue P, Delamar M, Desbat B, et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts[J]. Journal of the American Chemical Society, 1997, 119(1): 201-207. |