电化学(中英文) ›› 2017, Vol. 23 ›› Issue (2): 141-158. doi: 10.13208/j.electrochem.161245
• 田昭武先生90大寿祝贺专辑(厦门大学 孙世刚 林昌健教授主编) • 上一篇 下一篇
Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore*
收稿日期:
2017-01-03
修回日期:
2017-03-17
出版日期:
2017-04-28
发布日期:
2017-03-22
通讯作者:
Christian AMATORE
E-mail:christian.amatore@ens.fr
基金资助:
This work was supported in parts by PSL, Ecole Normale Supérieure, CNRS, and the University Pierre and Marie Curie (UMR 8640). Support by the ANR-NSF bilateral (USA-France) program (ANR grant #ANR-AAP-CE06 “ChemCatNanoTech”) is also greatly acknowledged.
Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore*
Received:
2017-01-03
Revised:
2017-03-17
Published:
2017-04-28
Online:
2017-03-22
Contact:
Christian AMATORE
E-mail:christian.amatore@ens.fr
About author:
christian.amatore@ens.fr
Supported by:
This work was supported in parts by PSL, Ecole Normale Supérieure, CNRS, and the University Pierre and Marie Curie (UMR 8640). Support by the ANR-NSF bilateral (USA-France) program (ANR grant #ANR-AAP-CE06 “ChemCatNanoTech”) is also greatly acknowledged.
摘要:
本文主要阐述和考察了一种简单的基于时间相关的电化学阵列计时电流响应数据来重构概率密度分布(f(ρ))的数学和数值方法,并应用于表征平面导体电化学惰性表面存在的或沉积的电化学活性或电催化纳米组分的分布,建立了适用于三种阵列(一种周期性分散和两种随机分散)涉及近球形纳米组分在平滑表面分散的数学和数值有效方法. 而这三种阵列代表了大多数应用于分析或电催化的二维实验电化学纳米阵列.本文建立的重构步骤易于通过大多数商业数学程序来实现, 尽管方法简单,但允许恢复的概率密度精度很高, 即使是可利用的实验获得的时间范围太短时也能严格应用,因此,完全适合于大多数实验过程.
中图分类号:
Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore. 基于电化学阵列计时电流数据对纳米颗粒或电化学活性纳米组分的分布重构[J]. 电化学(中英文), 2017, 23(2): 141-158.
Alexander Oleinick, Oleksii Sliusarenko, Irina Svir, Christian Amatore. Reconstruction of Distributions of Nanoparticles or Electroactive Nano-Components in Electrochemical Arrays Based on Chronoamperometric Data[J]. Journal of Electrochemistry, 2017, 23(2): 141-158.
[1] Murray R W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chemical Reviews, 2008, 108(7): 2688-2720. [2] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of Tetrahexahedral Platinum Nanocrystals With High-Index Facets and High Electro-Oxidation Activity. Science, 2007, 316(5825): 732-735. [3] Xiao X, Bard A J. Observing Single Nanoparticle Collisions at an Ultramicroelectrode by Electrocatalytic Amplification. Journal of the American Chemical Society, 2007, 129(31): 9610-9612. [4] Zhou Y G, Rees N V, Compton R G. The Electrochemical Detection and Characterization of Silver Nanoparticles in Aqueous Solution. Angewandte Chemie International Edition, 2011, 50(18): 4219-4221. [5] Yoo J J, Kim J, Crooks R M. Direct Electrochemical Detection of Individual Collisions between Magnetic Microbead/Silver Nanoparticle Conjugates and a Magnetized Ultramicroelectrode. Chemical Science, 2015, 6(11): 6665-6671. [6] Kissling, G P, Miles, D O, Fermin, D J. Electrochemical Charge Transfer Mediated By Metal Nanoparticles and Quantum Dots. Physical Chemistry Chemical Physics, 2011, 13(48): 21175-21185. [7] Zhao J J, Bradbury C R, Huclova S, Potapova I, Carrara M, Fermin D J. Nanoparticle-Mediated Electron Transfer across Ultrathin Self-Assembled Films. Journal of Physical Chemistry B, 2005, 109(48): 22985-22994. [8] Costentin C, Saveant J M. Catalysis at the nanoscale may change selectivity. Proceedings of The National Academy of Sciences of The United States of America, 2016, 113(42): 11756-11758. [9] Gal F, Challier L, Cousin F, Perez H, Noel V, Carrot G. Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose. ACS Applied Materials & Interfaces, 2016, 8(23): 14747-14755. [10] Multi-Walled Carbon Nanotube Supported Pd Nanocubes with Enhanced Electrocatalytic Activity. Hong W, Bi, P Y, Shang C S, Wang J, Wang E K. Journal of Materials Chemistry A, 2016, 4(12): 4485-4489. [11] Anderson R M, Yancey D F, Zhang L, Chill S T, Henkelman G, Crooks R M. A Theoretical and Experimental Approach for Correlating Nanoparticle Structure and Electrocatalytic Activity. Accounts of Chemical Research 2015, 48(5): 1351-1357. [12] Hong W, Wang J, Wang E K. Synthesis of Hollow PdRuCo Nanoparticles with Enhanced Electrocatalytic Activity. RSC Advances, 2015, 5(58): 46935-46940. [13] Neumann C C M, Laborda E, Tschulik K, Ward K R, Compton R G. Performance of Silver Nanoparticles in the Catalysis of the Oxygen Reduction Reaction in Neutral Media: Efficiency Limitation Due to Hydrogen Peroxide Escape. Nano Research, 2013, 6(7): 511-524. [14] Li Y Y, Jiang Y X, Chen M H, Liao H G, Huang R, Zhou Z Y, Tian N, Chen S P, Sun S G. Electrochemically Shape-Controlled Synthesis Of Trapezohedral Platinum Nanocrystals with High Electrocatalytic Activity. Chemical Communications, 2012, 48(76): 9531-9533. [15] Zhou Z Y, Huang Z Z, Chen D J, Wang Q, Tian N, Sun S G. High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation. Angewandte Chemie International Edition, 2010, 49(2): 411-414. [16] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Nanomaterials of High Surface Energy with Exceptional Properties in Catalysis and Energy Storage. Chemical Society Reviews, 2011, 40(7): 4167-4185. [17] Gara M, Ward K R, Compton R G. Nanomaterial Modified Electrodes: Evaluating Oxygen Reduction Catalysts. Nanoscale, 2013, 5(16): 7304-7311. [18] Yang H Z, Kumar S, Zou S H. Electroreduction of O2 on Uniform Arrays of Pt Nanoparticles. Journal of Electroanalytical Chemistry, 2013, 688(1): 180-188. [19] Fontaine O, Laberty-Rober C, Sanchez C. Sol-Gel Route to Zirconia-Pt-Nanoelectrode Arrays 8 nm in Radius: Their Geometrical Impact in Mass Transport. Langmuir, 2012, 28(7): 3650-3657. [20] Sun P, Mirkin M V. Kinetics of Electron-Transfer Reactions at Nanoelectrodes. Analytical Chemistry, 2006, 78(18): 6526-6534. [21] Sabatani E, Rubinstein I, Maoz R, Sagiv J. Organized Self-Assembling Monolayers on Electrodes .1. Octadecyl Derivatives on Gold. Journal of Electroanalytical Chemistry, 1987, 219(1-2): 365-371. [22] Finklea H O, Avery S, Lynch M, Furtsch T. Blocking Oriented Monolayers of Alkyl Mercaptans on Gold Electrodes. Langmuir, 1987, 3(3): 409-413. [23] Bethell D, Brust M, Schiffrin D J, Kiely C. From Monolayers to Nanostructured Materials: An Organic Chemist's View of Self-Assembly. Journal of Electroanalytical Chemistry, 1996, 409(1-2): 137-143. [24] Le Poul N, Douziech B, Zeitouny J, Thiabaud G, Colas H, Conan F, Cosquer N, Jabin I, Lagrost C, Hapiot P, Reinaud O, Le Mest Y. Mimicking the Protein Access Channel to a Metal Center: Effect of a Funnel Complex on Dissociative Versus Associative Copper Redox Chemistry. Journal of the American Chemical Society, 2009, 131(49): 17800-17807. [25] Chazalviel J N, Allongue P. On the Origin of the Efficient Nanoparticle Mediated Electron Transfer across a Self-Assembled Monolayer. Journal of the American Chemical Society, 2011, 133(4): 762-764. [26] Cancino J, Machado S A S.Microelectrode Array in Mixed Alkanethiol Self-Assembled Monolayers: Electrochemical Studies. Electrochimica Acta, 2012, 72(1): 108-113. [27] Leroux Y R, Hapiot P. Nanostructured Monolayers on Carbon Substrates Prepared by Electrografting of Protected Aryldiazonium Salts. Chemistry of Materials, 2013, 25(3): 489-495. [28] Lhenry S, Jalkh J, Leroux Y R, Ruiz J, Ciganda R, Astruc D, Hapiot P. Tunneling Dendrimers. Enhancing Charge Transport through Insulating Layer Using Redox Molecular Objects. Journal of the American Chemical Society, 2014, 136(52): 17950-17953. [29] Leroux Y R, Hui F, Hapiot P. A protecting-Deprotecting Strategy for Structuring Robust Functional Films Using Aryldiazonium Electroreduction. Journal of Electroanalytical Chemistry, 2013, 688(1): 298-303. [30] Fu F, Chen S, Kuzume A, Rudnev A, Huang C, Kaliginedi V, Baghernejad M, Hong W, Wandlowski T, Decurtins S, Liu S-X. Exploitation of Desilylation Chemistry in Tailor-Made Functionalization on Diverse Surfaces. Nature Communications, 2015, 6, # 6403. [31] Amatore C. Electrochemistry at Ultramicroelectrodes. in "Physical Electrochemistry: Principles, Methods and Applications" (I. Rubinstein, Ed.), M. Dekker, New York. 1995. Chap.4. pp.131-208. [32] Amatore C, Maisonhaute E, Simonneau G. Ohmic Drop Compensation in Cyclic Voltammetry at Scan Rates in the Megavolt per Second Range: Access to Nanometric Diffusion Layers via Transient Electrochemistry. Journal of Electroanalytical Chemistry, 2000, 486(2): 141-155. [33] Amatore C, Fosset B. Equivalence Between Electrodes of Different Shapes: Between Myth and Reality. Analytical Chemistry, 1996, 68(24): 4377-4388. [34] Watkins J J, Chen J, White H S, Abruna H D, Maisonhaute E, Amatore C. Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions. Analytical Chemistry, 2003, 75(16): 3962-3971. [35] Sun P, Mirkin M V. Electrochemistry of Individual Molecules in Zeptoliter Volumes. Journal of the American Chemical Society, 2008, 130(26): 8241-8250. [36] Amatore C, Arbault S, Guille M, Lemaitre F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chemical Reviews, 2008, 108(7): 2585–2621. [37] White R J, White H S. Electrochemistry in Nanometer-Wide Electrochemical Cells. Langmuir, 2008, 24(6): 2850-2855. [38] Boateng A, Irague F, Brajter-Toth A. Low nM Detection Limits at Porous 13nm Thick Membrane-Coated Nanostructured Microdisk Electrodes. Electroanalysis, 2013, 25(2): 345-355. [39] Du Y, Li B, Wang E K. "Fitting" Makes "Sensing" Simple: Label-Free Detection Strategies Based on Nucleic Acid Aptamers. Accounts of Chemical Research, 2013, 46(2): 203-213. [40] Li J, Wang E K. Silver Nanoclusters for Drug Detection in Biological Samples: What is the Future? Bioanalysis, 2014, 6(11): 1421-1423. [41] Fan D Q, Zhai Q F, Zhou W J, Zhu X Q, Wang E K, Dong S J. A Label-Free Colorimetric Aptasensor for Simple, Sensitive and Selective Detection of Pt (II) Based on Platinum (II)-Oligonucleotide Coordination Induced Gold Nanoparticles Aggregation. Biosensors & Bioelectronics, 2016, 85(1): 771-776. [42] Li D Y, Li J, Jia X F, Wang E K. Gold Nanoparticles Decorated Carbon Fiber Mat As a Novel Sensing Platform For Sensitive Detection Of Hg(II). Electrochemistry Communications, 2014, 42(1): 30-33. [43] Jia X F, Dong S J, Wang E K. Engineering the bioelectrochemical interface using functional nanomaterials and Microchip Technique Toward Sensitive and Portable Electrochemical Biosensors. Biosensors & Bioelectronics, 2016, 76(1): 80-90. [44] Du Y, Guo S J, DongS J, Wang E K. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials, 2011, 32(33): 8584-8592. [45] Chen A, Tsao M J, Chuang J F, Lin C H.Electrochemical determination of Verapamil with a microchip embedded with gold nanoelectrode ensemble electrodes. Electrochimica Acta, 2013, 89(1): 700-707. [46] Ongaro M, Ugo P. Sensor Arrays: Arrays of Micro-and Nanoelectrodes, in “Environmental Analysis By Electrochemical Sensors And Biosensors. Vol 1: Fundamentals” (Moretto L, Kalcher K, Eds.). Springer, New York (2014). pp: 583-613. [47] Dawson K, O'Riordan A. Electroanalysis at the Nanoscale, in “Annual Review of Analytical Chemistry, Vol 7” (Cooks R G, Pemberton J E, Eds.). Annual Reviews, Palo Alto (2014). Pp: 163-181. [48] Polsky R, Xiao X Y, Wheeler D R, Brozik S M. Multifunctional Electrode Arrays, in “Nanomaterials For Electrochemical Sensing And Biosensing” (Pumera M, Ed.). Pan Stanford Publishing (2013). pp: 89-131. [49] Virgilio F, Prasciolu M, Ugo P, Tormen M. Development of Electrochemical Biosensors by E-Beam Lithography for Medical Diagnostics. Microelectronic Engineering, 2013, 111(1): 320-324. [50] Ongaro M, Ugo P. Bioelectroanalysis with Nanoelectrode Ensembles and Arrays. Analytical and Bioanalytical Chemistry, 2013, 405(11): 3715-3729. [51] Zhang J, Ting B P, Ying J Y. Theoretical Assessment of Binding and Mass-Transport Effects in Electrochemical Affinity Biosensors that Utilize Nanoparticle Labels for Signal Amplification. Chemistry-a European Journal, 2012, 18(47): 15167-15177. [52] Yang C, Jacobs C B, Nguyen M D, Ganesana M, Zestos A G, Ivanov I N, Puretzky A A, Rouleau C M, Geohegan D B, Venton B J. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine. Analytical Chemistry, 2016, 88(1): 645-652. [53] Habtamu H B., Ugo P. Miniaturized Enzymatic Biosensor via Biofunctionalization of the Insulator of Nanoelectrode Ensembles. Electroanalysis, 2015, 27(9): 2187-2193. [54] Shipway A N, Katz E, Willner I. Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications. ChemPhysChem, 2000, 1(1): 18-52. [55] Amatore C, Saveant J M, Tessier D. Charge Transfer at Partially Blocked Surfaces. A Model for the Case of Microscopic Active and Inactive Sites. Journal of Electroanalytical Chemistry, 1983, 147(1-2): 39-51. [56] O. Sliusarenko O, Oleinick A, Svir I, Amatore C. Validating a Central Approximation in Theories of Regular Electrode Electrochemical Arrays of Various Common Geometries. Electroanalysis, 2015, 27(4): 980-991. [57] O. Sliusarenko O, Oleinick A, Svir I, Amatore C. Development and Validation of an Analytical Model for Predicting Chronoamperometric Responses of Random Arrays of Micro- and Nanodisk Electrodes. ChemElectroChem, 2015, 2(9): 1279-1291. [58] Davies T J, Compton R G. The Cyclic and Linear Sweep Voltammetry of Regular and Random Arrays of Microdisc Electrodes: Theory. Journal of Electroanalytical Chemistry, 2005, 585(1): 63-82. [59] Henstridge M C, Compton R G. Mass Transport to Micro- and nanoelectrodes and their Arrays: A Review. Chemical Record, 2012, 12(1): 63-71. [60] Zoski C G, Fernandez J L, Imaduwage K, Gunasekara D, Vadari R. Evaluation of the Intrinsic Kinetic Activity of Nanoparticle Ensembles under Steady-State Conditions. Journal of Electroanalytical Chemistry, 2011, 651(1): 80-93. [61] Masa J, Batchelor-McAuley C, Schuhmann W, Compton R G. Koutecky-Levich Analysis Applied to Nanoparticle Modified Rotating Disk Electrodes: Electrocatalysis or Misinterpretation? Nano Research, 2014, 7(1): 71-78. [62] Compton R G, Laborda E, Ward K R. Heterogeneous Surfaces, in Understanding Voltammetry: Simulation of Electrode Processes. Imperial College Press. London (2014). pp: 201-227. [63] Bard A J, Faulkner L R. Electrochemical Methods. J Wiley & Sons. New York (2001). pp: 161-166. [64] See e.g.: Cai Y, Newby B M Z. Marangoni Flow-Induced Self-Assembly of Hexagonal and Stripelike Nanoparticle Patterns. Journal of the American Chemical Society, 2008, 130(19): 6076–6077. [65] Fernandez J L, Wijesinghe M, Zoski C G. Theory and Experiments for Voltammetric and SECM Investigations and Application to ORR Electrocatalysis at Nanoelectrode Ensembles of Ultramicroelectrode Dimensions. Analytical Chemistry, 2015, 87(2): 1066-1074. [67] Leroux Y, Schaming D, Ruhlmann L, Hapiot P. SECM Investigations of Immobilized Porphyrins Films. Langmuir, 2010, 26(18): 14983-14989. [68] Fang P P, Buriez O, Labbe E, Tian Z Q, Amatore C. Electrochemistry at Gold Nanoparticles Deposited on Dendrimers Assemblies Adsorbed onto Gold and Platinum Surfaces. Journal of Electroanalytical Chemistry, 2011, 659(1): 76-82. [69] Marques J T, de Almeida R F M, Viana A S. Biomimetic Membrane Rafts Stably Supported on Unmodified Gold. Soft Matter, 2012, 8(6): 2007-2016. [70] Raya D G, Silien C, Blazquez M, Pineda T, Madueno R. Electrochemical and AFM Study of the 2D-Assembly of Colloidal Gold Nanoparticles on Dithiol SAMs Tuned by Ionic Strength. Journal of Physical Chemistry C, 2014, 118(26): 14617-14628. [71] Aurenhammer F. Voronoi Diagrams – A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 1991, 23(3):345–405. [72] Davies T J, Ward-Jones S, Banks C E, del Campo J,Mas R, Munoz F X, Compton R G. Journal of Electroanalytical Chemistry, 2005, 585(1): 51-62. [73] Belding S R, Dickinson E J F, Compton R G. Journal of Physical Chemistry C, 2009, 113(25): 11149-11156. [74] Belding S R, Compton R G. Journal of Physical Chemistry C, 2010, 114(18): 8309-8319. [75] Jarai-Szabo F, Neda Z. On the size distribution of Poisson Voronoi cells. Physica A, 2007, 385(2): 518-526. [76] Cheng I F, Whiteley L D, Martin C R. Ultramicroelectrode Ensembles - Comparison of Experimental and Theoretical Responses and Evaluation of Electroanalytical Detection Limits. Analytical Chemistry, 1989, 61(7): 762-766. [77] In order to reach diffusion layers of a few nanometer thickness one needs to use voltammetry in the megavolt per second range. See [32] and the following review: Amatore C, Maisonhaute E. When Voltammetry Reaches Nanoseconds. Analytical Chemistry, 2005, 77(15): 303A-311A. [78] Chan Y Y, Eng A Y S, Pumera M, Webster R D. Assessments of Surface Coverage after Nanomaterials are Drop Cast onto Electrodes for Electroanalytical Applications. ChemElectroChem, 2015, 2(7): 1003-1009. |
[1] | 凌 云, 汤 儆, 刘国坤, 宗 铖. 暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程[J]. 电化学(中英文), 2019, 25(6): 731-739. |
[2] | 黄帅帅,刘诚,金磊,杨防祖,田中群,周绍民. 玻碳电极表面复合配位银电结晶机理研究[J]. 电化学(中英文), 2018, 24(4): 344-350. |
[3] | 林旋,程美琴,商中瑾,熊婷,张贤土,田伟,林剑云,钟起玲*,任斌. Pt纳米空球粒径的可控制备及其甲醇电催化氧化[J]. 电化学(中英文), 2014, 20(6): 571-575. |
[4] | 李凯, 陈棽, 刘深娜, 陈碧桑, 林珩, 陈国良, 汪庆祥. 玻碳电极肉桂酸添加剂对锌电沉积的影响[J]. 电化学(中英文), 2013, 19(3): 267-274. |
[5] | 张蓉, 唐丽华, 范彬彬, 马静红, 李瑞丰, . CoSALEN/APO-5复合材料的制备及其电催化还原氧的性能[J]. 电化学(中英文), 2010, 16(2): 177-184. |
[6] | 邱国红;汪的华;金先波;胡晓宏;陈政;. Cr_2O_3粉末在CaCl_2熔盐中直接电化学还原的金属通腔电极研究[J]. 电化学(中英文), 2006, 12(3): 304-309. |
[7] | 游梦迪;程璇;刘连;张璐;. DM FC中甲醇渗透的电化学研究(英文)[J]. 电化学(中英文), 2006, 12(2): 148-153. |
[8] | 赵艳,方炎. 双层类脂膜成膜过程的电化学方法研究[J]. 电化学(中英文), 2004, 10(1): 70-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||