[1] Li L L, Diau E W G. Porphyrin-sensitized solar cells[J]. Chemical Society Reviews, 2013, 42(1): 291-304.
[2] Yang W J (阳卫军) , Guo C C (郭灿城), Mao Y L (毛彦利) , et al. Catalysis and Substituent Effects of Monom anganese porphyrins and Monoiron porphyrins for Pinene Oxidation with Air [J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2005, 26(9): 1690-1694.
[3] Wang B, Zuo X, Wu Y Q, et al. Preparation, characterization and gas sensing properties of lead tetra-(tert-butyl)-5, 10, 15, 20-tetraazaporphyrin spin-coating films[J]. Sensors and Actuators B: Chemical, 2007, 125(1): 268-273.
[4] Li F Y (李富友), Yu J H (余军华), Zhang B W (张宝文), et al. Study on Photocurrent Generation of Three Porphyrin Monolayer Modified Electrodes with Various Side Chain Lengths [J]. Acta Chimica Sinica(化学学报), 2006, 64(4): 301-305.
[5] Gregg B A, Fox M A, Bard A J. Porphyrin octaesters: new discotic liquid crystals[J]. Journal of the Chemical Society, Chemical Communications, 1987 (15): 1134-1135.
[6] Jin Z P (金志平), Peng X J (彭孝军), Sun L C (孙立成). Application of porphyrin supramolecular compounds in molecular devices [J]. Chemistry(化学通报), 2003, 66(7): 464-473.
[7] Lu J, Xu X, Li Z, et al. Zinc porphyrins with a pyridine-ring-anchoring group for dye-sensitized solar cells[J]. Chem Asian J, 2013, 8(956): 962.
[8] Tétreault N, Gr?tzel M. Novel nanostructures for next generation dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(9): 8506-8516.
[9] Listorti A, O’Regan B, Durrant J R. Electron transfer dynamics in dye-sensitized solar cells[J]. Chemistry of Materials, 2011, 23(15): 3381-3399.
[10] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14): 6382-6390.
[11] Mishra A, Fischer M K R, B?uerle P. Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules[J]. Angewandte Chemie International Edition, 2009, 48(14): 2474-2499.
[12] Gon?alves L M, de Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells: A safe bet for the future[J]. Energy & Environmental Science, 2008, 1(6): 655-667.
[13] Parisi M L, Maranghi S, Basosi R. The evolution of the dye sensitized solar cells from Gr?tzel prototype to up-scaled solar applications: A life cycle assessment approach[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 124-138.
[14] Li Q, Jiang Z, Qin J, et al. Heterocyclic-Functionalized Organic Dyes for Dye-Sensitized Solar Cells: Tuning Solar Cell Performance by Structural Modification[J]. Australian Journal of Chemistry, 2012, 65(9): 1203-1212.
[15] Kay A, Graetzel M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. The Journal of Physical Chemistry, 1993, 97(23): 6272-6277.
[16] Wang Q, Campbell W M, Bonfantani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15397-15409.
[17] Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2007, 111(32): 11760-11762.
[18] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature chemistry, 2014, 6(3): 242-247.
[19] Lu J, Liu S, Li H, et al. Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer[J]. Journal of Materials Chemistry A, 2014, 2(41): 17495-17501.
[20] Yella A, Mai C L, Zakeeruddin S M, et al. Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The Role of Benzene Spacers[J]. Angewandte Chemie, 2014, 126(11): 3017-3021.
[21] Lu J, Zhang B, Yuan H, et al. D? π–A Porphyrin Sensitizers with π-Extended Conjugation for Mesoscopic Solar Cells[J]. The Journal of Physical Chemistry C, 2014, 118(27): 14739-14748.
[22] Wang C L, Hu J Y, Wu C H, et al. Highly efficient porphyrin-sensitized solar cells with enhanced light harvesting ability beyond 800 nm and efficiency exceeding 10%[J]. Energy & Environmental Science, 2014, 7(4): 1392-1396.
[23] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency[J]. science, 2011, 334(6056): 629-634.
[24] Cao K, Lu J, Li H, et al. Efficient dye-sensitized solar cells using mesoporous submicrometer TiO 2 beads[J]. RSC Advances, 2015, 5(77): 62630-62637.
[25] Lu J, Zhang B, Liu S, et al. A cyclopenta [1, 2-b: 5, 4-b′] dithiophene–porphyrin conjugate for mesoscopic solar cells: a D-π-D-A approach[J]. Physical Chemistry Chemical Physics, 2014, 16(45): 24755-24762.
[26] Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells[J]. Accounts of Chemical Research, 2009, 42(11): 1809-1818.
[27] Urbani M, Gra?tzel M, Nazeeruddin M K, et al. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chemical reviews, 2014, 114(24): 12330-12396.
[28] Lu J, Xu X, Cao K, et al. D–π–A structured porphyrins for efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(34): 10008-10015.
[29] Liu Y, Xiang N, Feng X, et al. Thiophene-linked porphyrin derivatives for dye-sensitized solar cells[J]. Chemical Communications, 2009 (18): 2499-2501.
[30] Guo M, He R, Dai Y, et al. Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of π-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9166-9179.
[31] Lin C Y, Wang Y C, Hsu S J, et al. Preparation and spectral, electrochemical, and photovoltaic properties of acene-modified zinc porphyrins[J]. The Journal of Physical Chemistry C, 2009, 114(1): 687-693.
[32] Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells[J]. Nature Photonics, 2012, 6(3): 162-169.
[33] Hao S, Wu J, Fan L, et al. The influence of acid treatment of TiO 2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76(6): 745-750.
[34] López‐Duarte I, Wang M, Humphry‐Baker R, et al. Molecular engineering of zinc phthalocyanines with phosphinic acid anchoring groups[J]. Angewandte Chemie, 2012, 124(8): 1931-1934.
[35] Lee C Y, Hupp J T. Dye sensitized solar cells: TiO2 sensitization with a BODIPY-porphyrin antenna system[J]. Langmuir, 2009, 26(5): 3760-3765.
[36] YeonáLee C, CheonáJeong N. Porphyrin sensitized solar cells: TiO 2 sensitization with a π-extended porphyrin possessing two anchoring groups[J]. Chemical Communications, 2010, 46(33): 6090-6092.
[37] Liu J, Zhang J, Xu M, et al. Mesoscopic titania solar cells with the tris (1, 10-phenanthroline) cobalt redox shuttle: uniped versus biped organic dyes[J]. Energy & Environmental Science, 2011, 4(8): 3021-3029.
[38] Lu J, Liu S, Shen Y, et al. Alkyl-thiophene Functionalized D-π-A Porphyrins for Mesoscopic Solar Cells[J]. Electrochimica Acta, 2015.
[39] Wang C L, Lan C M, Hong S H, et al. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy & Environmental Science, 2012, 5(5): 6933-6940.
[40] Panda M K, Ladomenou K, Coutsolelos A G. Porphyrins in bio-inspired transformations: Light-harvesting to solar cell[J]. Coordination Chemistry Reviews, 2012, 256(21): 2601-2627.
[41] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water[J]. International journal of hydrogen energy, 2001, 26(7): 669-674.
[42] Graetzel M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12): 376-384.
[43] Kalyanasundaram K, Gr?tzel M. Light induced redox reactions of water soluble porphyrins, sensitization of hydrogen generation from water by zincporphyrin derivatives[J]. Helvetica Chimica Acta, 1980, 63(2): 478-485.
[44] Ngweniform P, Kusumoto Y, Ikeda M, et al. Conformation-dependent hydrogen evolution with cobalt (II) tetraphenylporphyrin solubilized into poly (l-glutamate)–decylammonium ion complex[J]. Chemical physics letters, 2006, 428(4): 436-439.
[45] Kim W, Tachikawa T, Majima T, et al. Tin-porphyrin sensitized TiO 2 for the production of H 2 under visible light[J]. Energy & Environmental Science, 2010, 3(11): 1789-1795.
[46] Jacques P A, Artero V, Pécaut J, et al. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages[J]. Proceedings of the National Academy of Sciences, 2009, 106(49): 20627-20632.
[47] Zhang P, Wang M, Gloaguen F, et al. Electrocatalytic hydrogen evolution from neutral water by molecular cobalt tripyridine–diamine complexes[J]. Chemical Communications, 2013, 49(82): 9455-9457.
[48] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: the new two‐dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.
[49] Huang D, Lu J, Li S, et al. Fabrication of Cobalt Porphyrin Electrochemically Reduced Graphene Oxide Hybrid Films for Electrocatalytic Hydrogen Evolution in Aqueous Solution[J]. Langmuir, 2014, 30(23): 6990-6998.
|