[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[2] Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Kluwer-Academic, 1999.
[3] Wu K(吴坤), Xu S Z(许思哲), Zhou X J(周雪姣), et al. Graphene quantum dots enhanced electrochemical performance of polypyrrole as supercapacitor electrode[J]. Journal of Electrochemistry(电化学), 2013, 19(4): 361-370.
[4] Xiao P(肖鹏), Wang D H(王大辉), Lang J W(朗俊伟). Comparison in factors affecting electrochemical properties of thermal-reduced graphene oxide for supercapacitors[J]. Journal of Electrochemistry(电化学), 2014, 20(6): 553-562.
[5] Chen K F(陈昆峰), Xue D F(薛冬峰). Chemical reaction and crystallization control on electrode materials for electrochemical energy storage[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, 45(1): 36-49.
[6] Chen K F(陈昆峰), Yang Y Y(杨阳阳), Chen X(陈旭), et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University (Natural Science)(河南大学学报 自然科学版), 2014, 44(4): 398-415.
[7] Chen K F(陈昆峰), Xue D F(薛冬峰). Rare earth and transitional metal colloidal supercapacitors[J]. Science China Technological Sciences(中国科学: 技术科学), 2015, doi: 10.1007/s11431-015 -5915-z.
[8] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.
[9] Becker H E. Low voltage electrolytic capacitor: USA, 2 800 616 (to General Electric)[P]. 1957.
[10] Murphy T C, Wright R B, Sutula R A. Electrochemical capacitors[C]. Delnick F M, Electrochemical Capacitors II, Proceedings, 96-25, New Jersey: The Electrochemical Society, 1997.
[11] Chen K F, Xue D F, Komarneni S. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO[J]. Journal of Power Sources, 2015, 275(1): 136-143.
[12] Chen K F, Sun C T, Xue D F. Morphology engineering of high performance binary oxide electrodes[J]. Physical Chemistry Chemical Physics, 2015, 17(2): 732-750.
[13] Chen K, Song S Y, Liu F, et al. Structural design of graphene for electrochemical energy storage[J]. Chemical Society Reviews, 2015, 44(17): 6230-6257.
[14] Chen K F, Song S Y, Xue D F. Beyond graphene: Materials chemistry toward high performance inorganic functional materials[J]. Journal of Materials Chemistry A, 2015, 3(6): 2441-2453.
[15] Rauda I E, Augustyn V, Dunn B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts of Chemical Research, 2013, 46(5): 1113-1124.
[16] Wang Y G, Xia Y Y. Recent progress in supercapacitors: From materials design to system construction[J]. Advanced Materials, 2013, 25(37): 5336-5342.
[17] Lu Z Y, Chang Z, Zhu W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance[J]. Chemical Communications, 2011, 47(34): 9651-9653.
[18] Kong D S, Wang J M, Shao H B, et al. Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance[J]. Journal of Alloy and Compounds, 2011, 509(18): 5611-5616.
[19] Rakhi R B, Chen W, Cha D Y, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letters, 2012, 12(5): 2559-2567.
[20] Chen K F, Xue D F. Ionic Supercapacitor electrode materials: A system-level design of electrode and electrolyte for transforming ions into colloids[J]. Colloid and Interface Science Communications, 2014, 1(1): 39-42.
[21] Chen K, Song S Y, Xue D F. An ionic aqueous pseudocapacitor system: Electroactive ions in both salt-electrode and redox-electrolyte[J]. RSC Advances, 2014, 4(44): 23338-23343.
[22] Chen K F, Xue D F. Crystallization of tin chloride for promising pseudocapacitor electrode[J]. CrystEngComm, 2014, 16(21): 4610-4618.
[23] Chen K F, Song S Y, Li K Y, et al. Water-soluble inorganic salts with ultrahigh specific capacitance: Crystallization transformation investigation of CuCl2 electrodes[J]. CrystEngComm, 2013, 15(47): 10367-10373.
[24] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176): 1210-1211.
[25] Chen K F, Xue D F. Formation of electroactive colloids via in-situ coprecipitation under electric field: Erbium chloride alkaline aqueous pseudocapacitor[J]. Journal of Colloid and Interface Science, 2014, 430(1): 265-271.
[26] Chen K F, Yang Y Y, Li K Y, et al. CoCl2 designed as excellent pseudocapacitor electrode materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 440-444.
[27] Chen K F, Xue D F. YbCl3 electrode in alkaline aqueous electrolyte with high pseudocapacitance[J]. Journal of Colloid and Interface Science, 2014, 424(1): 84-89.
[28] Chen K F, Xue D F. Water-soluble inorganic salt with ultrahigh specific capacitance: Ce(NO3)3 can be designed as excellent pseudocapacitor electrode[J]. Journal of Colloid and Interface Science, 2014, 416(1): 172-176.
[29] Chen X, Chen K F, Wang H, et al. Functionality of Fe(NO3)3 salts as both positive and negative pseudocapacitor electrodes in alkaline aqueous electrolyte[J]. Electrochimica Acta, 2014, 147(1): 216-224.
[30] Wei D, Scherer M R J, Bower C, et al. A nanostructured electrochromic supercapacitor[J]. Nano Letters, 2012, 12(4): 1857-1862.
[31] Chen X, Chen K F, Wang H, et al. Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system[J]. CrystEngComm, 2014, 16(29): 6707-6715.
[32] Chen X, Chen K F, Wang H, et al. A colloidal pseudocapacitor: Direct use of Fe(NO3)3 in electrode can lead to a high performance alkaline supercapacitor system[J]. Journal of Colloid and Interface Science, 2015, 444(1): 49-57.
[33] Chen K F, Yin S, Xue D F. Binary AxB1-x ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: Formation of electroactive colloids via in-situ electric field assisted coprecipitation[J]. Nanoscale, 2015, 7(3): 1161-1166.
[34] Chen K F, Xue D F, Komarneni S. Colloidal pseudocapacitor: Nanoscale aggregation of Mn colloids from MnCl2 under alkaline condition[J]. Journal of Power Sources, 2015, 279(1): 365-371.
[35] Chen K F, Xue D F. Searching for electrode materials with high electrochemical reactivity[J]. Journal of Materiomics, 2015, doi: 10.1016/j.jmat.2015.07.001.
[36] Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states[J]. Journal of Physical Chemistry A, 2006, 110(39): 11332-11337. |