电化学(中英文) ›› 2025, Vol. 31 ›› Issue (11): 2516001. doi: 10.61558/2993-074X.3594
所属专题: SSE
• 综述 • 上一篇
杜澳a,#, 张娟b,#, 徐攀c,#, 李亚捷d,#, 易康宇e,#, 沈珍珍b,#, 葛慧琳a, 章广文a, 张超辉b, 王昱昊b, 赵辰孜c,g, 徐萌扬d, 揭育林e, 文锐b,f,*(
), 焦淑红e,*(
), 施思齐d,i,*(
), 张强c,g,h,*(
), 杨春鹏a,*(
), 郭玉国b,f,*(
)
收稿日期:2025-07-06
修回日期:2025-10-09
接受日期:2025-11-12
发布日期:2025-11-12
出版日期:2025-11-12
通讯作者:
文锐,焦淑红,施思齐,张强,杨春鹏,郭玉国
E-mail:ruiwen@iccas.ac.cn;jiaosh@ustc.edu.cn;sqshi@shu.edu.cn;zhang-qiang@mails.tsinghua.edu.cn;cpyang@tju.edu.cn;ygguo@iccas.ac.cn
Ao Dua,#, Juan Zhangb,#, Pan Xuc,#, Ya-Jie Lid,#, Kang-Yu Yie,#, Zhen-Zhen Shenb,#, Hui-Lin Gea, Guang-Wen Zhanga, Chao-Hui Zhangb, Yu-Hao Wangb, Chen-Zi Zhaoc,g, Meng-Yang Xud, Yu-Lin Jiee, Rui Wenb,f,*(
), Shu-Hong Jiaoe,*(
), Si-Qi Shid,i,*(
), Qiang Zhangc,g,h,*(
), Chun-Peng Yanga,*(
), Yu-Guo Guob,f,*(
)
Received:2025-07-06
Revised:2025-10-09
Accepted:2025-11-12
Online:2025-11-12
Published:2025-11-12
Contact:
Rui Wen, Shu-Hong Jiao, Si-Qi Shi, Qiang Zhang, Chun-Peng Yang, Yu-Guo Guo
E-mail:ruiwen@iccas.ac.cn;jiaosh@ustc.edu.cn;sqshi@shu.edu.cn;zhang-qiang@mails.tsinghua.edu.cn;cpyang@tju.edu.cn;ygguo@iccas.ac.cn
About author:First author contact:#Ao Du, Juan Zhang, Pan Xu, Ya-Jie Li, Kang-Yu Yi and Zhen-Zhen Shen contributed equally in this work.
摘要:
锂金属负极的理论容量高达3860 mAh·g-1,被视为开发下一代高能量密度电池的核心基础。然而,其实际应用受到多项关键挑战的阻碍,包括枝晶形成、不稳定的固体电解质界面(SEI)、与电解质的副反应,以及由此引发的安全风险。本综述系统探讨了液态和固态电池体系中锂的成核、生长与脱嵌机制,深入分析了理解枝晶生长成因至关重要的关键理论概念,如异相成核热力学、表面扩散动力学、空间电荷效应及 SEI 诱导成核。此外,综述还讨论了导致 SEI 降解和死锂形成的电化学-力学耦合失效问题。针对液态电池体系,综述提出了抑制枝晶形成与SEI不稳定性的策略,包括电解质优化、人工SEI设计及电极骨架设计。在固态电池方面,综述对聚合物、硫化物和卤化物电解质相关的界面挑战进行了细致分析,并针对不同类型的固态电解质总结了相应的解决方案。同时,综述强调了先进表征技术与计算模拟在理解和调控锂金属-电解质界面过程中的重要性。展望未来,综述指出了未来的研究方向:需重视跨学科方法的整合,以应对这些相互关联的挑战。通过解决这些问题,锂金属电池的快速商业化与广泛应用之路将更加清晰,使我们更接近实现稳定、高能量密度的电池,从而满足各行业现代储能应用日益增长的需求。
杜澳, 张娟, 徐攀, 李亚捷, 易康宇, 沈珍珍, 葛慧琳, 章广文, 张超辉, 王昱昊, 赵辰孜, 徐萌扬, 揭育林, 文锐, 焦淑红, 施思齐, 张强, 杨春鹏, 郭玉国. 对电化学十大科学问题之二“如何理解和调控金属Li负极成核/生长及枝晶抑制策略?”的回应——调控锂金属成核与生长以抑制枝晶:从液态电解质电池到固态电池[J]. 电化学(中英文), 2025, 31(11): 2516001.
Ao Du, Juan Zhang, Pan Xu, Ya-Jie Li, Kang-Yu Yi, Zhen-Zhen Shen, Hui-Lin Ge, Guang-Wen Zhang, Chao-Hui Zhang, Yu-Hao Wang, Chen-Zi Zhao, Meng-Yang Xu, Yu-Lin Jie, Rui Wen, Shu-Hong Jiao, Si-Qi Shi, Qiang Zhang, Chun-Peng Yang, Yu-Guo Guo. Regulating Lithium Metal Nucleation and Growth for Dendrite Suppression: From Liquid-Electrolyte to Solid-State Batteries[J]. Journal of Electrochemistry, 2025, 31(11): 2516001.
| Category | Electrolyte | Capacity (mAh·cm-2) | Current (mA·cm-2) | Cycle number | CE | Ref |
|---|---|---|---|---|---|---|
| HCE | 1LiFSI-1.2DME (by mole) | 1 | 0.5 | 220 | 99.1 | [ |
| 1LiFSI-1.4DME (by mole) | 1 | 0.5 | 500 | 99.20 | [ | |
| 4 mol·L-1 LiFSI-DEE | 1 | 0.5 | 10 | 99.38 | [ | |
| LHCE | 1.02 LiFSI-1 DME-2 PFB (by mole) | 1 | 0.5 | 10 | 99.82 | [ |
| 1 LiFSI-1.2 DME-3 TTE (by mole) | 1 | 0.5 | 300 | 99.3 | [ | |
| 1 LiFSI-1.1 DME-2.2 TFMB (by mole) | 1 | 0.5 | 700 | 99.5 | [ | |
| 1 LiFSI-1.2 DME-3 BTFE | 1 | 0.5 | 10 | 99.4 | [ | |
| 1 LiFSI-1.2 DME-3 TFEO | 1 | 0.5 | 10 | 99.5 | [ | |
| 2 mol·L-1 LiFSI-EGBE/TTE (1:1 by volume) | 1 | 0.5 | 400 | 99.2 | [ | |
| 1.4 mol·L-1 LiFSI/DME-HFC (1:3 by mole) | 1 | 0.5 | 400 | 99.45 | [ | |
| 2 mol·L-1 LiFSI-DEE/PhH (1:1 by volume) | 1 | 1 | 500 | 99.40 | [ | |
| 2 mol·L-1 LiFSI-DME/BTFMD (1:3 by volume) | 1 | 0.5 | 250 | 99.17 | [ | |
| 1 LiFSI-1.1 DME-2.2 BzTF (by mole) | 1 | 0.5 | 450 | 99.4 | [ | |
| WSE | 2 mol·L-1 LiFSI-DEP | 1 | 0.5 | 400 | 99.53 | [ |
| 1 mol·L-1 LiFSI-DEE | 1 | 0.5 | 10 | 99.02 | [ | |
| 1.5 mol·L-1 LiFSI-DME/MNBE (3:2 v/v) | 1 | 1 | 200 | 99.2 | [ | |
| 2 mol·L-1 LiFSI-TMMS | 1 | 0.5 | 10 | 99.6 | [ | |
| 0.6 mol·L-1 LiFSI+0.2 mol·L-1 LiDFOB-1,3-DIOX | 1 | 0.5 | 10 | 99.47 | [ | |
| Fluorinated electrolyte | 1.2 mol·L-1 LiFSI-F5DEE | 1 | 0.5 | 10 | 99.5 | [ |
| 1 mol·L-1 LiFSI-FDMB | 1 | 0.5 | 10 | 99.52 | [ | |
| 2 mol·L-1 LiFSI-F3EME | 1 | 0.5 | 600 | 99.31 | [ | |
| 2 mol·L-1 LiFSI-TFEM | 1 | 0.5 | 10 | 99.14 | [ | |
| 2 mol·L-1 LiFSI-PXEO-CF3 | 1 | 0.5 | 10 | 99.71 | [ |
| Dimension | Type | Typical materials | Key functions | Disadvantages |
|---|---|---|---|---|
| 0D | Inert Fillers | Al2O3, SiO2, TiO2 | Interface passivation, reduce crystallinity | Limited ionic conductivity enhancement, weak mechanical reinforcement |
| Active Fillers | Li3PO4, Li1.3Al0.3Ti1.₇(PO4)3 | Provide additional Li⁺ transport sites | Prone to agglomeration, harsh synthesis conditions | |
| 1D | Inert Fillers | SiC nanofibers, Carbon nanotubes | Mechanical reinforcement, dendrite blocking | Non-conductive, require ion-conductive matrix |
| Active Fillers | LLZO nanowires, LLTO nanorods | Construct continuous ion channels | Poor dispersion, high interfacial impedance | |
| 2D | Inert Fillers | BN, Graphene, Montmorillonite | Physical barrier, homogenize Li⁺ flux | Interlayer stacking, ion conduction relies on interface effects |
| Active Fillers | Li3PS4@MXene, Li-Al layered double hydroxides | 2D ion diffusion channels | Complex synthesis (e.g., MXene requires HF etching) | |
| 3D | Inert Fillers | Porous SiO2, 3D ceramic scaffolds | Structural support, electrolyte buffering | Ion conduction relies on liquid phase, mechanical brittleness |
| Active Fillers | MOFs, 3D LLZO frameworks | 3D ion-percolation networks | High synthesis cost, pore collapse risks |
| [1] | Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013. http://dx.doi.org/10.1038/natrevmats.2016.13. |
| [2] | Degen F, Winter M, Bendig D, Tübke J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nat. Energy, 2023, 8(11): 1284-1295. http://dx.doi.org/10.1038/s41560-023-01355-z. |
| [3] | Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nat. Energy, 2021, 6(2): 123-134. http://dx.doi.org/10.1038/s41560-020-00748-8. |
| [4] | Huang J, Li C, Jiang D K, Gao J Y, Cheng L, Li G C, Luo H, Xu Z L, Shin D M, Wang Y M, Lu Y Y, Kim Y. Solid-state electrolytes for lithium metal batteries: State-of-the-art and perspectives[J]. Adv. Funct. Mater., 2025, 35(1): 2411171. http://dx.doi.org/10.1002/adfm.202411171. |
| [5] | Wang S J, Xiong P, Zhang J Q, Wang G X. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes[J]. Energy Stor. Mater., 2020, 29: 310-331. http://dx.doi.org/10.1016/j.ensm.2020.04.032. |
| [6] | Wang Z K, Liu J, Wang M F, Shen X W, Qian T, Yan C L. Toward safer solid-state lithium metal batteries: A review[J]. Nanoscale Adv., 2020, 2(5): 1828-1836. http://dx.doi.org/10.1039/d0na00174k. |
| [7] | Song Z H, Jiang W Y, Li B R, Qu Y P, Mao R Y, Jian X G, Hu F Y. Advanced polymers in cathodes and electrolytes for lithium-sulfur batteries: Progress and prospects[J]. Small, 2024, 20(19): e2308550. http://dx.doi.org/10.1002/smll.202308550. |
| [8] | Allard C. Li-air batteries hitting the road[J]. Nat. Rev. Mater., 2023, 8(3): 145-145. http://dx.doi.org/10.1038/s41578-023-00546-0. |
| [9] | Yang H T, Xu Y H, Zhao Y F, Geng C N, Ge H L, Wang L, Lv W, Yang C P, Chen W, Yang Q H. Catalysis-driven sulfur conversion: From electrolyte-flooded to solid-state batteries[J]. Adv. Funct. Mater., 2025, 35: 2426089. http://dx.doi.org/10.1002/adfm.202426089. |
| [10] | Li J X, Guan D H, Wang X X, Miao C L, Li J Y, Xu J J. Highly stable organic molecular porous solid electrolyte with one-dimensional ion migration channel for solid-state lithium-oxygen battery[J]. Adv. Mater., 2024, 36(23): 2312661. http://dx.doi.org/10.1002/adma.202312661. |
| [11] | Li D Y, Zhao L L, Wang J, Yang C P. Tailoring the d-band center over isomorphism pyrite catalyst for optimized intrinsic affinity to intermediates in lithium-oxygen batteries[J]. Adv. Energy Mater., 2023, 13(15): 2204057. http://dx.doi.org/10.1002/aenm.202204057. |
| [12] | Brandt K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3): 173-183. http://dx.doi.org/10.1016/0167-2738(94)90408-1. |
| [13] | Evarts E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526(7575): S93-S95. http://dx.doi.org/10.1038/526S93a. |
| [14] | Whittingham M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104(10): 4271-4302. http://dx.doi.org/10.1021/cr020731c. |
| [15] | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. http://dx.doi.org/10.1038/35104644. |
| [16] | Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density[J]. Mater. Res. Bull., 1980, 15(6): 783-789. http://dx.doi.org/10.1016/0025-5408(80)90012-4. |
| [17] | Huang Y, Manthiram A. In honor of nobel laureate John B. Goodenough[J]. Adv. Energy Mater., 2021, 11(2): 2002817. http://dx.doi.org10.1002/aenm.202002817. |
| [18] | Wang Q Y, Liu B, Shen Y H, Wu J K, Zhao Z Q, Zhong C, Hu W B. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Adv. Sci., 2021, 8(17): e2101111. http://dx.doi.org/10.1002/advs.202101111. |
| [19] | Chinese Society of Electrochemistry (CSE). The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121. http://dx.doi.org/10.61558/2993-074x.3444. |
| [20] | Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537. http://dx.doi.org/10.1039/c3ee40795k. |
| [21] | Tong B L, Li X F. Towards separator safety of lithium-ion batteries: A review[J]. Mater. Chem. Front., 2024, 8(2): 309-340. http://dx.doi.org/10.1039/D3QM00951C. |
| [22] | Li B R, Chao Y, Li M C, Xiao Y B, Li R, Yang K, Cui X C, Xu G, Li L Y, Yang C K, Yu Y, Wilkinson D P, Zhang J J. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochem. Energy Rev., 2023, 6(1): 7. http://dx.doi.org/10.1007/s41918-022-00147-5. |
| [23] | Cao D X, Sun X, Li Q, Natan A, Xiang P Y, Zhu H L. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter-Us, 2020, 3(1): 57-94. http://dx.doi.org/10.1016/j.matt.2020.03.015. |
| [24] | Lu Y Y, Tu Z Y, Archer L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nat. Chem., 2014, 13(10): 961-969. http://dx.doi.org/10.1038/nmat4041. |
| [25] | Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Advanced micro/nanostructures for lithium metal anodes[J]. Adv. Sci., 2017, 4(3): 1600445. http://dx.doi.org/10.1002/advs.201600445. |
| [26] | Konz Z M, McCloskey B D. Lithium quantified, dead or alive[J]. Nat. Energy, 2022, 7(11): 1005-1006. http://dx.doi.org/10.1038/s41560-022-01142-2. |
| [27] | Wei Z W, Wang X, Zhou M J, Papovic S, Zheng K, Swierczek K, Wu J H, Xin X. Revitalizing lithium metal batteries: Strategies for tackling dead lithium formation and reactivation[J]. Small, 2024, 20(51): e2407395. http://dx.doi.org/10.1002/smll.202407395. |
| [28] | Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q. Dead lithium formation in lithium metal batteries: A phase field model[J]. J. Energy Chem., 2022, 71: 29-35. http://dx.doi.org/10.1016/j.jechem.2021.12.020. |
| [29] | Yang C P, Fu K, Zhang Y, Hitz E, Hu L B. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Adv. Mater., 2017, 29(36): 1701169. http://dx.doi.org/10.1002/adma.201701169. |
| [30] | Xia S X, Yang C W, Jiang Z Y, Fan W X, Yuan T, Pang Y P, Sun H, Chen T Q, Li X, Zheng S Y. Towards practical lithium metal batteries with composite scaffolded lithium metal: An overview[J]. Adv. Compos. Hybrid Mater., 2023, 6(6): 198. http://dx.doi.org/10.1007/s42114-023-00769-3. |
| [31] | Piao Z H, Gao R H, Liu Y Q, Zhou G M, Cheng H M. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries[J]. Adv. Mater., 2023, 35(15): e2206009. http://dx.doi.org/10.1002/adma.202206009. |
| [32] | Gao S L, Sun F Y, Liu N, Yang H B, Cao P F. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - a review[J]. Mater. Today, 2020, 40: 140-159. http://dx.doi.org/10.1016/j.mattod.2020.06.011. |
| [33] | Tang W H, Ma J Y, Zhang X Q, Li Y J, Meng S Q, Zhang Y L, Dong H Y, Liu R P, Gao R, Feng M. Interfacial strategies towards highly stable Li-metal anode of liquid-based Li-metal batteries[J]. Energy Stor. Mater., 2024, 64: 103084. http://dx.doi.org/10.1016/j.ensm.2023.103084. |
| [34] | Wang Z Y, Du Z J, Liu Y Y, Knapp C E, Dai Y H, Li J W, Zhang W, Chen R W, Guo F, Zong W, Gao X, Zhu J X, Wei C L, He G J. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes[J]. Escience, 2024, 4(4): 100189. http://dx.doi.org/10.1016/j.esci.2023.100189. |
| [35] | Zhong Y X, Yang X Y, Guo R Q, Zhai L Q, Wang X R, Wu F, Wu C, Bai Y. Protecting lithium metal anodes in solid-state batteries[J]. Electrochem. Energy Rev., 2024, 7(1): 30. http://dx.doi.org/10.1007/s41918-024-00230-z. |
| [36] | Kim D, Hu X, Yu B, Chen Y I. Small additives make big differences: A review on advanced additives for high-performance solid-state Li metal batteries[J]. Adv. Mater., 2024, 36(33): e2401625. http://dx.doi.org/10.1002/adma.202401625. |
| [37] | Zhao C Z, Zhao B C, Yan C, Zhang X Q, Huang J Q, Mo Y F, Xu X X, Li H, Zhang Q. Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: A review[J]. Energy Stor. Mater., 2020, 24: 75-84. http://dx.doi.org/10.1016/j.ensm.2019.07.026. |
| [38] | Paul P, Chen B R A, Langevin S J, Dufek E S, Weker J N, Ko J S. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability[J]. Energy Stor. Mater., 2022, 45: 969-1001. http://dx.doi.org/10.1016/j.ensm.2021.12.021. |
| [39] | Wu T L, Wang Y Y, Zhang W C, Lu K X, Tan J Y, Zheng M T, Xiao Y, Liu Y L, Liang Y R. Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition[J]. J. Energy Chem., 2022, 71: 324-332. http://dx.doi.org/10.1016/j.jechem.2022.03.039. |
| [40] | Huang W Z, Xu P, Huang X Y, Zhao C Z, Bie X, Zhang H, Chen A, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhai X, Jiang T, Fan L Z, Wang D, Zhang Q. Lithium metal anode: Past, present, and future[J]. MetalMat, 2023, 1(1): 6. http://dx.doi.org/10.1002/metm.6. |
| [41] | Qiu X G, Liu W, Liu J D, Li J Z, Zhang K, Cheng F Y. Nucleation mechanism and substrate modification of lithium metal anode[J]. Acta Phys.-Chim. Sin., 2020, 37(1): 2009012. http://dx.doi.org/10.3866/pku.Whxb202009012. |
| [42] | Zhong Y L, Zhang X, Zhang Y, Jia P, Xi Y B, Kang L X, Yu Z J. Understanding and unveiling the electro-chemo-mechanical behavior in solid-state batteries[J]. SusMat, 2024, 4(2): 190. http://dx.doi.org/19010.1002/sus2.190. |
| [43] | Ely D R, García R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. J. Electrochem. Soc., 2013, 160(4): A662-A668. http://dx.doi.org/10.1149/1.057304jes. |
| [44] | Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angew. Chem. Int. Ed., 2017, 56(27): 7764-7768. http://dx.doi.org/10.1002/anie.201702099. |
| [45] | Chen X, Chen X R, Hou T Z, Li B Q, Cheng X B, Zhang R, Zhang Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci. Adv., 2019, 5(2): eaau7728. http://dx.doi.org/10.1126/sciadv.aau7728. |
| [46] | Park J, In Jung J, Ha S, Hyun Kim D, Jang H S, Hoon Kim B, Lim H K, Jin H J, Soo Yun Y. The impact of supersaturated electrode on heterogeneous lithium nucleation and growth dynamics[J]. Angew. Chem. Int. Ed., 2024, 63(48): e202409992. http://dx.doi.org/10.1002/anie.202409992. |
| [47] | Aurbach D, Cohen Y. The application of atomic force microscopy for the study of Li deposition processes[J]. J. Electrochem. Soc., 2019, 143(11): 3525-3532. http://dx.doi.org/10.1149/1.1837248. |
| [48] | Aurbach D, Weissman I, Zaban A, Chusid O. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts[J]. Electrochim. Acta, 1994, 39(1): 51-71. http://dx.doi.org/10.1016/0013-4686(94)85010-0. |
| [49] | Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochim. Acta, 2012, 76: 270-274. http://dx.doi.org/10.1016/j.electacta.2012.05.001. |
| [50] | Jackle M, Gross A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. J. Chem. Phys., 2014, 141(17): 174710. http://dx.doi.org/10.1063/1.4901055. |
| [51] | Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473. http://dx.doi.org/10.1021/acs.chemrev.7b00115. |
| [52] | Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Phys. Rev. A, 1990, 42(12): 7355-7367. http://dx.doi.org/10.1103/physreva.42.7355. |
| [53] | Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. http://dx.doi.org/10.1016/j.chempr.2018.12.002. |
| [54] | Bai P, Guo J Z, Wang M, Kushima A, Su L, Li J, Brushett F R, Bazant M Z. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, 2018, 2(11): 2434-2449. http://dx.doi.org/10.1016/j.joule.2018.08.018. |
| [55] | Chen A L, Shang N, Ouyang Y, Mo L L, Zhou C Y, Tjiu W W, Lai F L, Miao Y E, Liu T X. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes[J]. eScience, 2022, 2(2): 192-200. http://dx.doi.org/10.1016/j.esci.2022.02.003. |
| [56] | Su H, Fu J, Liu S, Zhong Y, Hu Y, Kuang J, Wang M, Wang X, Sun X, Tu J. Metal-incorporated interphases formed between inorganic solid electrolytes and Li metal: Beneficial or detrimental?[J]. EES Batteries, 2025, 1(2): 242-249. http://dx.doi.org/10.1039/d5eb00024f. |
| [57] | Wang H P, Wang H L. Advanced research on electrolytes for regulating the SEI in high-performance lmbs[J]. EES Batteries, 2025, 1(2): 217-226. http://dx.doi.org/10.1039/d4eb00042k. |
| [58] | Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. http://dx.doi.org/10.1016/j.nanoen.2016.12.001. |
| [59] | Chen X R, Yao Y X, Yan C, Zhang R, Cheng X B, Zhang Q. A diffusion--reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2020, 59(20): 7743-7747. http://dx.doi.org/10.1002/anie.202000375. |
| [60] | Chen X R, Zhao B C, Yan C, Zhang Q. Review on Li deposition in working batteries: From nucleation to early growth[J]. Adv. Mater., 2021, 33(8): e2004128. http://dx.doi.org/10.1002/adma.202004128. |
| [61] | Yan K, Lu Z D, Lee H W, Xiong F, Hsu P C, Li Y Z, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nat. Energy, 2016, 1(3): 16010. http://dx.doi.org/10.1038/nenergy.2016.10. |
| [62] | Li N, Ye Q, Zhang K, Yan H B, Shen C, Wei B Q, Xie K Y. Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes[J]. Angew. Chem. Int. Ed., 2019, 58(50): 18246-18251. http://dx.doi.org/10.1002/anie.201911267. |
| [63] | Shi P, Li T, Zhang R, Shen X, Cheng X B, Xu R, Huang J Q, Chen X R, Liu H, Zhang Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Adv. Mater., 2019, 31(8): e1807131. http://dx.doi.org/10.1002/adma.201807131. |
| [64] | Cai W, Yan C, Yao Y X, Xu L, Chen X R, Huang J Q, Zhang Q. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2021, 60(23): 13007-13012. http://dx.doi.org/10.1002/anie.202102593. |
| [65] | Shen L D, Liu X, Dong J, Zhang Y T, Xu C X, Lai C, Zhang S Q. Functional lithiophilic polymer modified separator for dendrite-free and pulverization-free lithium metal batteries[J]. J. Energy Chem., 2021, 52: 262-268. http://dx.doi.org/10.1016/j.jechem.2020.04.058. |
| [66] | Chen X R, Qin Y D, Shen X, Yan C, Diao R, Zhu H Z, Tang C, Ouyang M G, Zhang Q. Lithium-ion batteries participating in frequency regulation through low-destructive bidirectional pulsed current operation[J]. Adv. Energy Mater., 2023, 13(25): 2300500. http://dx.doi.org/10.1002/aenm.202300500. |
| [67] | Xu L, Xiao Y, Yang Y, Yang S J, Chen X R, Xu R, Yao Y X, Cai W L, Yan C, Huang J Q, Zhang Q. Operando quantified lithium plating determination enabled by dynamic capacitance measurement in working Li-ion batteries[J]. Angew. Chem. Int. Ed., 2022, 61(39): e202210365. http://dx.doi.org/10.1002/anie.202210365. |
| [68] | Zhang D C, Liu Y X, Yang S, Zhu J X, Hong H, Li S M, Xiong Q, Huang Z D, Wang S X, Liu J, Zhi C Y. Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries[J]. Adv. Mater., 2024, 36(28): e2401549. http://dx.doi.org/10.1002/adma.202401549. |
| [69] | Brissot C, Rosso M, Chazalviel J N, Baudry P, Lascaud S. In situ study of dendritic growth inlithium/peo-salt/lithium cells[J]. Electrochim. Acta, 1998, 43(10-11): 1569-1574. http://dx.doi.org/10.1016/s0013-4686(97)10055-x. |
| [70] | Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition[J]. J. Power Sources, 2013, 232: 23-28. http://dx.doi.org/10.1016/j.jpowsour.2013.01.014. |
| [71] | Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M. Li dendrite growth and Li ionic mass transfer phenomenon[J]. J. Electroanal. Chem., 2011, 661(1): 84-89. http://dx.doi.org/10.1016/j.jelechem.2011.06.035. |
| [72] | Crowther O, West A C. Effect of electrolyte composition on lithium dendrite growth[J]. J. Electrochem. Soc., 2008, 155(11): A806-A811. http://dx.doi.org/10.1149/1.2969424. |
| [73] | Porthault H, Decaux C. Electrodeposition of lithium metal thin films and its application in all-solid-state microbatteries[J]. Electrochim. Acta, 2016, 194: 330-337. http://dx.doi.org/10.1016/j.electacta.2016.02.102. |
| [74] | Zhang R, Shen X, Cheng X B, Zhang Q. The dendrite growth in 3d structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Stor. Mater., 2019, 23: 556-565. http://dx.doi.org/10.1016/j.ensm.2019.03.029. |
| [75] | Zhang X Q, Chen X, Xu R, Cheng X B, Peng H J, Zhang R, Huang J Q, Zhang Q. Columnar lithium metal anodes[J]. Angew. Chem. Int. Ed., 2017, 56(45): 14207-14211. http://dx.doi.org/10.1002/anie.201707093. |
| [76] | Sano H, Kitta M, Matsumoto H. Effect of charge transfer resistance on morphology of lithium electrodeposited in ionic liquid[J]. J. Electrochem. Soc., 2016, 163(12): D3076-D3079. http://dx.doi.org/10.1149/2.0111612jes. |
| [77] | Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by light microscopy during electrodeposition and dissolution of lithium[J]. J. Power Sources, 2014, 261: 112-119. http://dx.doi.org/10.1016/j.jpowsour.2014.03.029. |
| [78] | Stark J K, Ding Y, Kohl P A. Nucleation of electrodeposited lithium metal: Dendritic growth and the effect of co-deposited sodium[J]. J. Electrochem. Soc., 2013, 160(9): D337-D342. http://dx.doi.org/10.1149/2.028309jes. |
| [79] | Sun F, Moroni R, Dong K, Markötter H, Zhou D, Hilger A, Zielke L, Zengerle R, Thiele S, Banhart J, Manke I. Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron X-ray phase contrast tomography[J]. ACS Energy Lett., 2016, 2(1): 94-104. http://dx.doi.org/10.1021/acsenergylett.6b00589. |
| [80] | Aryanfar A, Brooks D J, Colussi A J, Hoffmann M R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries[J]. Phys. Chem. Chem. Phys., 2014, 16(45): 24965-24970. http://dx.doi.org/10.1039/c4cp03590a. |
| [81] | Park M S, Ma S B, Lee D J, Im D, Doo S G, Yamamoto O. A highly reversible lithium metal anode[J]. Sci. Rep., 2014, 4(1): 3815. http://dx.doi.org/10.1038/srep03815. |
| [82] | Shen X, Zhang R, Wang S H, Chen X, Zhao C A, Kuzmina E, Karaseva E, Kolosnitsyn V, Zhang Q. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chin. J. Chem. Eng., 2021, 37: 137-143. http://dx.doi.org/10.1016/j.cjche.2021.05.008. |
| [83] | Huang F Y, Jie Y L, Li X P, Chen Y W, Cao R G, Zhang G Q, Jiao S H. Correlation between Li plating morphology and reversibility of Li metal anode[J]. Acta Phys.-Chim. Sin., 2020, 37(1): 2008081. http://dx.doi.org/10.3866/pku.Whxb202008081. |
| [84] | Xiao H, Li Y J, Chen R Q, Xie T C, Xu P, Zhu H J, He J L, Zheng W T, Huang S M. Integrative design of laser-induced graphene array with lithiophilic mnox nanoparticles enables superior lithium metal batteries[J]. eScience, 2023, 3(5): 100134. http://dx.doi.org/10.1016/j.esci.2023.100134. |
| [85] | Jiang F N, Yang S J, Liu H, Cheng X B, Liu L, Xiang R, Zhang Q, Kaskel S, Huang J Q. Mechanism understanding for stripping electrochemistry of Li metal anode[J]. SusMat, 2021, 1(4): 506-536. http://dx.doi.org/10.1002/sus2.37. |
| [86] | Li H D, Jia W S, Yan X X, Yang Y Y. Quantitative lithium composite as 3d lithium foam anode for lithium metal battery[J]. J. Electrochem., 2022, 28(8): 2202051. http://dx.doi.org/10.13208/j.electrochem.2202051. |
| [87] | Shi P, Ma J, Liu M, Guo S, Huang Y, Wang S, Zhang L, Chen L, Yang K, Liu X, Li Y, An X, Zhang D, Cheng X, Li Q, Lv W, Zhong G, He Y B, Kang F. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nat. Nanotechnol., 2023, 18(6): 602-610. http://dx.doi.org/10.1038/s41565-023-01341-2. |
| [88] | Lee S Y, Shangguan J Y, Betzler S, Harris S J, Doeff M M, Zheng H M. Lithium metal stripping mechanisms revealed through electrochemical liquid cell electron microscopy[J]. Nano Energy, 2022, 102: 107641. http://dx.doi.org/10.1016/j.nanoen.2022.107641. |
| [89] | Werres M, Xu Y, Jia H, Wang C, Xu W, Latz A, Horstmann B. Origin of heterogeneous stripping of lithium in liquid electrolytes[J]. ACS Nano, 2023, 17(11): 10218-10228. http://dx.doi.org/10.1021/acsnano.3c00329. |
| [90] | Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Lett., 2017, 17(2): 1132-1139. http://dx.doi.org/10.1021/acs.nanolett.6b04755. |
| [91] | Tao M, Chen X, Lin H, Jin Y, Shan P, Zhao D, Gao M, Liang Z, Yang Y. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries[J]. ACS Nano, 2023, 17(23): 24104-24114. http://dx.doi.org/10.1021/acsnano.3c09120. |
| [92] | Chen X R, Yan C, Ding J F, Peng H J, Zhang Q. New insights into "dead lithium" during stripping in lithium metal batteries[J]. J. Energy Chem., 2021, 62: 289-294. http://dx.doi.org/10.1016/j.jechem.2021.03.048. |
| [93] | Wang J A, Ma Q Y, Sun S Y, Yang K, Cai Q, Olsson E, Chen X, Wang Z, Abdelkader A M, Li Y S, Yan W, Ding S J, Xi K. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth[J]. eScience, 2022, 2(6): 655-665. http://dx.doi.org/10.1016/j.esci.2022.09.001. |
| [94] | Li Y Z, Huang W, Li Y B, Pei A, Boyle D T, Cui Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. http://dx.doi.org/10.1016/j.joule.2018.08.004. |
| [95] | Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium: Applications to energy storage[J]. J. Electrochem. Soc., 1990, 137(3): 775. http://dx.doi.org/10.1149/1.2086553. |
| [96] | Wang R Y, Kirk D W, Zhang G X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions[J]. J. Electrochem. Soc., 2006, 153(5): C357-C364. http://dx.doi.org/10.1149/1.2186037. |
| [97] | Soto F A. Computational insights into surface dynamics, Mg clustering, and dendrite formation in magnesium batteries[J]. Comput. Mater. Sci., 2025, 252: 113791. http://dx.doi.org/10.1016/j.commatsci.2025.113791. |
| [98] | Li K, Hu Z Y, Ma J Z, Chen S, Mu D X, Zhang J T. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Adv. Mater., 2019, 31(33): 1902399. http://doi.org/10.1002/adma.201902399. |
| [99] | Chi S S, Wang Q R, Han B, Luo C, Jiang Y D, Wang J, Wang C Y, Yu Y, Deng Y H. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition[J]. Nano Letters, 2020, 20(4): 2724-2732. http://dx.doi.org/10.1021/acs.nanolett.0c00352. |
| [100] | Jäckle M, Groß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. J. Chem. Phys., 2014, 141(17): 174710. http://dx.doi.org/10.1063/1.4901055. |
| [101] | Jäckle M, Helmbrecht K, Smits M, Stottmeister D, Groß A. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries?[J]. Energy Environ. Sci., 2018, 11(12): 3400-3407. http://dx.doi.org/10.1039/C8EE01448E. |
| [102] | Tan W, Kimura K, Tominaga Y. Li-ion mobility and solvation structures in concentrated poly(ethylene carbonate) electrolytes: A molecular dynamics simulation study[J]. Batteries, 2025, 11(2): 52. https://doi.org/10.3390/batteries11020052. |
| [103] | Wang X, Peng H, Zheng H, Liu Z Y, Sun K J, Ma G F, Lei Z Q. Weak solvation effects and molecular-rich layers induced water-poor helmholtz layers boost highly stable Zn anode[J]. Energy Storage Mater., 2024, 73: 103856. http://dx.doi.org/10.1016/j.ensm.2024.103856. |
| [104] | Sheng L, Wu Y Z, Tian J K, Wang L, Wang J L, Tang Y P, Xu H, He X M. Impact of lithium-ion coordination on lithium electrodeposition[J]. Energy Environ. Mater., 2023, 6(1): e12266. http://dx.doi.org/10.1002/eem2.12266. |
| [105] | Holoubek J, Liu H D, Wu Z H, Yin Y J, Xing X, Cai G R, Yu S C, Zhou H Y, Pascal T A, Chen Z, Liu P. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nat. Energy, 2021, 6(3): 303-313. http://dx.doi.org/10.1038/s41560-021-00783-z. |
| [106] | Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. J. Power Sources, 2015, 300: 376-385. http://dx.doi.org/10.1016/j.jpowsour.2015.09.055. |
| [107] | Wang Q, Zhang G, Li Y J, Hong Z J, Wang D, Shi S Q. Application of phase-field method in rechargeable batteries[J]. npj Comput. Mater., 2020, 6(1): 176. https://doi.org/10.1038/s41524-020-00445-w. |
| [108] | Liang C, Xing P F, Hua L, Wu M W. Effect of charging modes and parameters on lithium dendrite growth studied by phase-field modeling[J]. J. Phys. Chem. C, 2025, 129(2): 1078-1088. http://dx.doi.org/10.1021/acs.jpcc.4c08243. |
| [109] | Liang L, Chen L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Appl. Phys. Lett., 2014, 105(26): 263903. http://dx.doi.org/10.1063/1.4905341. |
| [110] | Xu X, Liu Y, Hwang J Y, Kapitanova O O, Song Z, Sun Y K, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Adv. Energy Mater., 2020, 10(44): 2002390. http://dx.doi.org/10.1002/aenm.202002390. |
| [111] | Yao S G, Kan X, Zhou R, Ding X, Xiao M, Cheng J. Simulation of dendritic growth of a zinc anode in a zinc-nickel single flow battery using the phase field-lattice boltzmann method[J]. New J. Chem., 2021, 45(4): 1838-1852. http://dx.doi.org/10.1039/D0NJ05528J. |
| [112] | Jeon J, Yoon G H, Vegge T, Chang J H. Phase-field investigation of lithium electrodeposition at different applied overpotentials and operating temperatures[J]. ACS Appl. Mater. Interfaces, 2022, 14(13): 15275-15286. http://dx.doi.org/10.1021/acsami.2c00900. |
| [113] | Li Y J, Sha L T, Zhang G, Chen B, Zhao W, Wang Y P, Shi S Q. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries[J]. Chin. Chem. Lett., 2023, 34(2): 107993. http://dx.doi.org/10.1016/j.cclet.2022.107993. |
| [114] | Zhang J W, Liu Y P, Wang C G, Tan H F. An electrochemical-mechanical phase field model for lithium dendrite[J]. J. Electrochem. Soc., 2021, 168(9): 090522. http://dx.doi.org/10.1149/1945-7111/ac22c7. |
| [115] | Shen X, Zhang R, Shi P, Chen X, Zhang Q. How does external pressure shape Li dendrites in Li metal batteries?[J]. Adv. Energy Mater., 2021, 11(10): 2003416. http://dx.doi.org/10.1002/aenm.202003416 |
| [116] | Zhao F P, Sun Q, Yu C, Zhang S M, Adair K, Wang S Z, Liu Y L, Zhao Y, Liang J W, Wang C H, Li X N, Li X, Xia W, Li R Y, Huang H, Zhang L, Zhao S Q, Lu S G, Sun X L. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries[J]. ACS Energy Letters, 2020, 5(4): 1035-1043. http://dx.doi.org/10.1021/acsenergylett.0c00207. |
| [117] | Jana A, Ely D R, García R E. Dendrite-separator interactions in lithium-based batteries[J]. J. Power Sources, 2015, 275: 912-921. http://dx.doi.org/10.1016/j.jpowsour.2014.11.056. |
| [118] | Li Y J, Chen B, Wang Y P, Xing H, Zhao W, Zhang G, Shi S Q. Inhibiting dendrite growth by customizing electrolyte or separator to achieve anisotropic lithium-ion transport: A phase-field study[J]. Acta Phys.-Chim. Sin., 2024, 40(3): 2305053. http://dx.doi.org/10.3866/PKU.WHXB202305053. |
| [119] | Li Y J, Zhang G, Chen B, Zhao W, Sha L T, Wang D, Yu J, Shi S Q. Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations[J]. Chin. Chem. Lett., 2022, 33(6): 3287-3290. http://dx.doi.org/10.1016/j.cclet.2022.03.065. |
| [120] | Li Y J, Wang Y P, Chen B, Lin Y X, Zhang G, Avdeev M, Shi S Q. Proactive lithium dendrite regulation enabled by manipulating separator microstructure using high-fidelity phase-field simulation[J]. Adv. Energy Mater., 2025: 2500503. http://dx.doi.org/10.1002/aenm.202500503. |
| [121] | James F. Monte carlo theory and practice[J]. Rep. Prog. Phys., 1980, 43(9): 1145. http://dx.doi.org/10.1088/0034-4885/43/9/002. |
| [122] | Bonate P L. A brief introduction to monte carlo simulation[J]. Clin. Pharmacokinet., 2001, 40(1): 15-22. http://dx.doi.org/10.2165/00003088-200140010-00002. |
| [123] | Perera K, Jayawardena R. Applications of monte carlo simulations in modeling phase transitions, surface properties, and defect formation mechanisms in silica-based materials[J]. Int. J. Adv. Sci. Comput. Model. Simul., 2023, 13(5): 1-14. https://doi.org/10.1016/S0926-860X(97)00130-0. |
| [124] | Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305. http://dx.doi.org/10.1002/anie.201801513. |
| [125] | He J, Bhargav A, Shin W, Manthiram A. Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte[J]. J. Am. Chem. Soc., 2021, 143(48): 20241-20248. http://dx.doi.org/10.1021/jacs.1c08851. |
| [126] | Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549. http://dx.doi.org/10.1038/s41563-018-0063-z. |
| [127] | Singh N, Arthur T S, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries[J]. Chem. Commun., 2013, 49(2): 149-151. http://dx.doi.org/10.1039/c2cc34673g. |
| [128] | Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. J. Power Sources, 2014, 261: 112-119. http://dx.doi.org/10.1016/j.jpowsour.2014.03.029. |
| [129] | Li Q, Yi T C, Wang X L, Pan H Y, Quan B G, Liang T G, Guo X X, Yu X Q, Wang OWR, Huang X J, Chen L Q, Li H. In situ visualization of lithium plating in all-solid-state lithium-metal battery[J]. Nano Energy, 2019, 63: 103895. http://dx.doi.org/10.1016/j.nanoen.2019.103895. |
| [130] | Perez-Beltran S, Kuai D, Balbuena P B. SEI formation and lithium-ion electrodeposition dynamics in lithium metal batteries via first-principles kinetic monte carlo modeling[J]. ACS Energy Lett, 2024, 9(11): 5268-5278. http://dx.doi.org/10.1021/acsenergylett.4c02019. |
| [131] | Chen X, Liu X Y, Shen X, Zhang Q. Applying machine learning to rechargeable batteries: From the microscale to the macroscale[J]. Angew. Chem. Int. Ed., 2021, 60(46): 24354-24366. http://dx.doi.org/10.1002/anie.202107369. |
| [132] | Mao J L, Miao J Z, Lu Y Y, Tong Z M. Machine learning of materials design and state prediction for lithium ion batteries[J]. Chin. J. Chem. Eng, 2021, 37: 1-11. http://dx.doi.org/10.1016/j.cjche.2021.04.009. |
| [133] | Liu Y, Guo B R, Zou X X, Li Y J, Shi S Q. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater., 2020, 31: 434-450. http://dx.doi.org/10.1016/j.ensm.2020.06.033. |
| [134] | Ren Y, Zhang K A, Zhou Y, Cao Y. Phase-field simulation and machine learning study of the effects of elastic and plastic properties of electrodes and solid polymer electrolytes on the suppression of Li dendrite growth[J]. ACS Appl. Mater. Interfaces, 2022, 14(27): 30658-30671. http://dx.doi.org/10.1021/acsami.2c03000. |
| [135] | Li Y J, Wang Y P, Chen B, Lin HL, Zhang G, Shi S Q. Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate[J]. Energy Storage Sci. Technol., 2024, 13(9): 2864-2870. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2024.0513. |
| [136] | Hu T P, Huang H C, Zhou G B, Wang X Y, Zhu J X, Cheng Z, Fu F J, Wang X X, Dai F Z, Yu K, Xu S Z. Observation of dendrite formation at Li metal-electrolyte interface: A machine-learning enhanced constant potential framework[J]. Nat. Commun., 2025, 16(1): 7379. https://doi.org/10.1038/s41467-025-62824-5. |
| [137] | Lee D K J, Tan T L, Ng M F. Machine learning-assisted bayesian optimization for the discovery of effective additives for dendrite suppression in lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2024, 16(46): 64364-64376. http://dx.doi.org/10.1021/acsami.4c16611. |
| [138] | Chen S J, Gong Z P, Zhao P Y, Zhang Y H, Cheng B, Hou J H, Song J X, Ding X D, Sun J, Shi J W, Deng J K. Design of nanostructure in solid electrolyte interphase for enhancing the mechanical durability of lithium metal anode by deep-learning approach[J]. Energy Storage Mater., 2024, 65: 103096. http://dx.doi.org/10.1016/j.ensm.2023.103096. |
| [139] | Liu Y, Yang Z W, Zou X X, Lin Y X, Ma S C, Zuo W, Zou Z Y, Wang H, Avdeev M, Shi S Q. A general framework to govern machine learning oriented materials data quality[J]. Mat. Sci. Eng. R, 2025, 166: 101050. http://dx.doi.org/10.1016/j.mser.2025.101050. |
| [140] | Liu Y, Zou X X, Yang Z W, Shi S Q. Machine learning embedded with materials domain knowledge[J]. J. Chin. Ceram. Soc, 2022, 50(3): 863-876. http://dx.doi.org/10.14062/j.issn.0454-5648.20220093. |
| [141] | Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nat. Mater., 2014, 13(1): 69-73. http://dx.doi.org/10.1038/nmat3793. |
| [142] | Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895. http://dx.doi.org/10.1002/adma.201506124. |
| [143] | Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat. Energy, 2017, 2(3): 17012. http://dx.doi.org/10.1038/nenergy.2017.12. |
| [144] | Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558. http://dx.doi.org/10.1016/j.joule.2018.05.002. |
| [145] | Jiao S H, Zheng J M, Li Q Y, Li X, Engelhard M H, Cao R G, Zhang J G, Xu W. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries[J]. Joule, 2018, 2(1): 110-124. http://dx.doi.org/10.1016/j.joule.2017.10.007. |
| [146] | Fang C C, Li J X, Zhang M H, Zhang Y H, Yang F, Lee J Z, Lee M H, Alvarado J, Schroeder M A, Yang YYC, Lu B Y, Williams N, Ceja M, Yang L, Cai M, Gu J, Xu K, Wang X F, Meng Y S. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. http://dx.doi.org/10.1038/s41586-019-1481-z. |
| [147] | Zhang L Q, Yang T T, Du C C, Liu Q N, Tang Y S, Zhao J, Wang B L, Chen T W, Sun Y, Jia P, Li H, Geng L, Chen J Z, Ye H J, Wang Z F, Li Y S, Sun H M, Li X M, Dai Q S, Tang Y F, Peng Q M, Shen T D, Zhang S L, Zhu T, Huang J Y. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nat. Nanotechnol., 2020, 15(2): 94-98. http://dx.doi.org/10.1038/s41565-019-0604-x. |
| [148] | Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Adv. Mater., 2016, 28(9): 1853-1858. http://dx.doi.org/10.1002/adma.201504526. |
| [149] | Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J. Electrochem. Soc., 2019, 126(12): 2047-2051. http://dx.doi.org/10.1149/1.2128859. |
| [150] | Peljo P, Girault H H. Electrochemical potential window of battery electrolytes: The homo-lumo misconception[J]. Energy Environ. Sci., 2018, 11(9): 2306-2309. http://dx.doi.org/10.1039/c8ee01286e. |
| [151] | Cao X, Xu Y B, Zou L F, Bao J, Chen Y X, Matthews B E, Hu J T, He X Z, Engelhard M H, Niu C J, Arey B W, Wang C S, Xiao J, Liu J, Wang C M, Xu W, Zhang J G. Stability of solid electrolyte interphases and calendar life of lithium metal batteries[J]. Energy Environ. Sci., 2023, 16(4): 1548-1559. http://dx.doi.org/10.1039/d2ee03557j. |
| [152] | Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nat. Energy, 2016, 1: 1-7. http://dx.doi.org/10.1038/Nenergy.2016.114. |
| [153] | Yun Q, He Y B, Lv W, Zhao Y, Li B, Kang F, Yang Q H. Chemical dealloying derived 3d porous current collector for Li metal anodes[J]. Adv. Mater., 2016, 28(32): 6932-6939. http://dx.doi.org/10.1002/adma.201601409. |
| [154] | Sayavong P, Zhang W, Oyakhire S T, Boyle D T, Chen Y, Kim S C, Vila R A, Holmes S E, Kim M S, Bent S F, Bao Z, Cui Y. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability[J]. J. Am. Chem. Soc., 2023, 145(22): 12342-12350. http://dx.doi.org/10.1021/jacs.3c03195. |
| [155] | Yan C, Li H R, Chen X, Zhang X Q, Cheng X B, Xu R, Huang J Q, Zhang Q. Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes[J]. J. Am. Chem. Soc., 2019, 141(23): 9422-9429. http://dx.doi.org/10.1021/jacs.9b05029. |
| [156] | Li N W, Shi Y, Yin Y X, Zeng X X, Li J Y, Li C J, Wan L J, Wen R, Guo Y G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angew. Chem. Int. Ed., 2018, 57(6): 1505-1509. http://dx.doi.org/10.1002/anie.201710806. |
| [157] | Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nat. Energy, 2018, 3(8): 674-681. http://dx.doi.org/10.1038/s41560-018-0196-y. |
| [158] | Liu Y Y, Lin D C, Li Y Z, Chen G X, Pei A, Nix O, Li Y B, Cui Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nat. Commun., 2018, 9(1): 3656. http://dx.doi.org/10.1038/s41467-018-06077-5. |
| [159] | Chang Z, Yang H J, Pan A Q, He P, Zhou H S. An improved 9 micron thick separator for a 350 wh/kg lithium metal rechargeable pouch cell[J]. Nat. Commun., 2022, 13(1): 6788. http://dx.doi.org/10.1038/s41467-022-34584-z. |
| [160] | Liu Y Y, Lin D C, Yuen P Y, Liu K, Xie J, Dauskardt R H, Cui Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Adv. Mater., 2017, 29(10): 201605531. http://dx.doi.org/10.1002/adma.201605531. |
| [161] | Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-free rechargeable lithium metal batteries[J]. Adv. Funct. Mater., 2016, 26(39): 7094-7102. http://dx.doi.org/10.1002/adfm.201602353. |
| [162] | Yang C P, Yao Y G, He S M, Xie H, Hitz E, Hu L B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Adv. Mater., 2017, 29(38): 201702714. http://dx.doi.org/10.1002/adma.201702714. |
| [163] | Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Prestoring lithium into stable 3d nickel foam host as dendrite-free lithium metal anode[J]. Adv. Funct. Mater., 2017, 27(24): 201700348. http://dx.doi.org/10.1002/adfm.201700348. |
| [164] | Gao Y, Zhao Y, Li Y C, Huang Q, Mallouk T E, Wang D. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries[J]. J. Am. Chem. Soc., 2017, 139(43): 15288-15291. http://dx.doi.org/10.1021/jacs.7b06437. |
| [165] | Pang Q, Liang X, Shyamsunder A, Nazar L F. An formed solid electrolyte surface layer enables stable plating of Li metal[J]. Joule, 2017, 1(4): 871-886. http://dx.doi.org/10.1016/j.joule.2017.11.009. |
| [166] | Markevich E, Salitra G, Chesneau F, Schmidt M, Aurbach D. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Lett., 2017, 2(6): 1321-1326. http://dx.doi.org/10.1021/acsenergylett.7b00300. |
| [167] | Cheng Q, Wei L, Liu Z, Ni N, Sang Z, Zhu B, Xu W H, Chen M J, Miao Y P, Chen L Q, Min W, Yang Y. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated raman scattering microscopy[J]. Nat. Commun., 2018, 9(1): 2942. http://dx.doi.org/10.1038/s41467-018-05289-z. |
| [168] | Li Q, Zhu S P, Lu Y Y. 3d porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Adv. Funct. Mater., 2017, 27(18): 201606422. http://dx.doi.org/10.1002/adfm.201606422. |
| [169] | Li W, Luo P, Chen M H, Lin X P, Du L, Song H Y, Lu Y H, Cui Z M. Hedging Li dendrite formation by virtue of controllable tip effect[J]. J. Mater. Chem. A, 2022, 10(28): 15161-15168. http://dx.doi.org/10.1039/d2ta03336d. |
| [170] | Jiao X X, Wang X Y, Xu X Y, Wang Y J, Ryu H H, Park J, Hwang J Y, Xiong S Z, Sun Y K, Song Z X, Liu Y Y. Multi-physical field simulation: A powerful tool for accelerating exploration of high-energy-density rechargeable lithium batteries[J]. Adv. Energy Mater., 2023, 13(39): 202301708. http://dx.doi.org/10.1002/aenm.202301708. |
| [171] | Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-Yassar R, Mashayek F. Stability of solid-electrolyte interphase (SEI) on the lithium metal surface in lithium metal batteries (lmbs)[J]. ACS Appl. Energy Mater., 2020, 3(11): 10560-10567. http://dx.doi.org/10.1021/acsaem.0c01605. |
| [172] | Wang C H, Liang J W, Luo J, Liu J, Li X N, Zhao F P, Li R Y, Huang H, Zhao S Q, Zhang L, Wang J T, Sun X L. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci. Adv., 2021, 7(37): eabh1896. http://dx.doi.org/10.1126/sciadv.abh1896. |
| [173] | Liu S F, Ji X, Yue J, Hou S, Wang P F, Cui C Y, Chen J, Shao B W, Li J R, Han F D, Tu J P, Wang C S. High interfacial-energy interphase promoting safe lithium metal batteries[J]. J. Am. Chem. Soc., 2020, 142(5): 2438-2447. http://dx.doi.org/10.1021/jacs.9b11750. |
| [174] | Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat. Commun., 2014, 5: 5261. http://dx.doi.org/10.1038/ncomms6261. |
| [175] | Yu Z, Wang H S, Kong X, Huang W, Tsao Y C, Mackanic D G, Wang K C, Wang X C, Huang W X, Choudhury S, Zheng Y, Amanchukwu C V, Hung S T, Ma Y T, Lomeli E G, Qin J, Cui Y, Bao Z N. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nat. Energy, 2020, 5(7): 526-533. http://dx.doi.org/10.1038/s41560-020-0634-5. |
| [176] | Xue W J, Shi Z, Huang M J, Feng S T, Wang C, Wang F, Lopez J, Qiao B, Xu G Y, Zhang W X, Dong Y H, Gao R, Shao-Horn Y, Johnson J A, Li J. Fsi-inspired solvent and "full fluorosulfonyl" electrolyte for 4 V class lithium-metal batteries[J]. Energy Environ. Sci., 2020, 13(1): 212-220. http://dx.doi.org/10.1039/c9ee02538c. |
| [177] | Lu Y Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer L A. Stable cycling of lithium metal batteries using high transference number electrolytes[J]. Adv. Energy Mater., 2015, 5(9): 201402073. http://dx.doi.org/10.1002/aenm.201402073. |
| [178] | Lu D P, Shao Y Y, Lozano T, Bennett W D, Graff G L, Polzin B, Zhang J G, Engelhard M H, Saenz N T, Henderson W A, Bhattacharya P, Liu J, Xiao J. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Adv. Energy Mater., 2015, 5(3): 201400993. http://dx.doi.org/10.1002/aenm.201400993. |
| [179] | Han B, Zhang Z, Zou Y C, Xu K, Xu G Y, Wang H, Meng H, Deng Y H, Li J, Gu M. Poor stability of Li2Co3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy[J]. Adv. Mater., 2021, 33(22): e2100404. http://dx.doi.org/10.1002/adma.202100404. |
| [180] | Boyle D T, Kim S C, Oyakhire S T, Vila R A, Huang Z, Sayavong P, Qin J, Bao Z, Cui Y. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes[J]. J. Am. Chem. Soc., 2022, 144(45): 20717-20725. http://dx.doi.org/10.1021/jacs.2c08182. |
| [181] | Kong L C, Li Y, Feng W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochem. Energy Rev., 2021, 4(4): 633-679. http://dx.doi.org/10.1007/s41918-021-00109-3. |
| [182] | Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode[J]. Nat. Commun., 2015, 6: 6362. http://dx.doi.org/10.1038/ncomms7362. |
| [183] | Zhou D, He Y B, Liu R L, Liu M, Du H D, Li B H, Cai Q, Yang Q H, Kang F Y. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Adv. Energy Mater., 2015, 5(15): 1500353. http://dx.doi.org/10.1002/aenm.201500353. |
| [184] | Wang H S, Yu Z, Kong X, Huang W L, Zhang Z W, Mackanic D G, Huang X Y, Qin J, Bao Z N, Cui Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries[J]. Adv. Mater., 2021, 33(25): e2008619. http://dx.doi.org/10.1002/adma.202008619. |
| [185] | Chen Y W, Li M H, Liu Y, Jie Y L, Li W X, Huang F Y, Li X P, He Z X, Ren X D, Chen Y H, Meng X H, Cheng T, Gu M, Jiao S H, Cao R G. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nat. Commun., 2023, 14(1): 2655. http://dx.doi.org/10.1038/s41467-023-38387-8. |
| [186] | Jiang Z P, Zeng Z Q, Liang X M, Yang L, Hu W, Zhang C, Han Z L, Feng J W, Xie J. Fluorobenzene, a low‐density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries[J]. Adv. Funct. Mater., 2020, 31(1): 202005991. http://dx.doi.org/10.1002/adfm.202005991. |
| [187] | Li M H, Liu Y, Yang X M, Zhang Q, Cheng Y F, Deng L, Zhou Q W, Cheng T, Gu M D. Acetonitrile-based local high-concentration electrolytes for advanced lithium metal batteries[J]. Adv. Mater., 2024, 36(36): e2404271. http://dx.doi.org/10.1002/adma.202404271. |
| [188] | Vanaphuti P, Cui Z, Manthiram A. Demarcating the impact of electrolytes on high‐nickel cathodes and lithium‐metal anode[J]. Adv. Funct. Mater., 2023, 34(7): 202308619. http://dx.doi.org/10.1002/adfm.202308619. |
| [189] | Zhang G Z, Li J W, Chi S S, Wang J, Wang Q R, Ke R H, Liu Z B, Wang H, Wang C Y, Chang J, Deng Y H, Lu J. Molecular design of competitive solvation electrolytes for practical high‐energy and long‐cycling lithium‐metal batteries[J]. Adv. Funct. Mater., 2023, 34(13): 202312413. http://dx.doi.org/10.1002/adfm.202312413. |
| [190] | Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. http://dx.doi.org/10.1016/j.joule.2019.05.006. |
| [191] | Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280. http://dx.doi.org/10.1038/s41560-019-0336-z. |
| [192] | Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H S, Matthews B E, Lee H, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nat. Energy, 2019, 4(9): 796-805. http://dx.doi.org/10.1038/s41560-019-0464-5. |
| [193] | Zhu C N, Sun C C, Li R H, Weng S T, Fan L W, Wang X F, Chen L X, Noked M, Fan X L. Anion-diluent pairing for stable high-energy Li metal batteries[J]. ACS Energy Lett., 2022, 7(4): 1338-1347. http://dx.doi.org/10.1021/acsenergylett.2c00232. |
| [194] | Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angew. Chem. Int. Ed., 2021, 60(8): 4090-4097. http://dx.doi.org/10.1002/anie.202011482. |
| [195] | Lian J, Tan S D, Lou J T, Lan J Q, Cui W T, Han Z, Zheng G R, Hou T Z, Lv W, Liu M, Wang Z Q. Unique non-chelating multidentate ligand tuning solvation structure and interfacial chemistry for high-voltage lithium metal batteries[J]. Adv. Funct. Mater., 2024: 202421802. http://dx.doi.org/10.1002/adfm.202421802. |
| [196] | Li A M, Borodin O, Pollard T P, Zhang W, Zhang N, Tan S, Chen F, Jayawardana C, Lucht B L, Hu E, Yang X Q, Wang C. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nat. Chem., 2024, 16(6): 922-929. http://dx.doi.org/10.1038/s41557-024-01497-x. |
| [197] | Zhao Y, Zhou T, Ashirov T, Kazzi M E, Cancellieri C, Jeurgens L P H, Choi J W, Coskun A. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nat. Commun., 2022, 13(1): 2575. http://dx.doi.org/10.1038/s41467-022-29199-3. |
| [198] | Kim S C, Kong X, Vila R A, Huang W, Chen Y, Boyle D T, Yu Z, Wang H, Bao Z, Qin J, Cui Y. Potentiometric measurement to probe solvation energy and its correlation to lithium battery cyclability[J]. J. Am. Chem. Soc., 2021, 143(27): 10301-10308. http://dx.doi.org/10.1021/jacs.1c03868. |
| [199] | Yu Z, Rudnicki P E, Zhang Z W, Huang Z J, Celik H, Oyakhire S T, Chen Y L, Kong X, Kim S C, Xiao X, Wang H S, Zheng Y, Kamat G A, Kim M S, Bent S F, Qin J, Cui Y, Bao Z N. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nat. Energy, 2022, 7(1): 94-106. http://dx.doi.org/10.1038/s41560-021-00962-y. |
| [200] | Langdon J, Manthiram A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes[J]. Adv. Mater., 2022, 34(41): e2205188. http://dx.doi.org/10.1002/adma.202205188. |
| [201] | Su L S, Zhao X H, Yi M, Charalambous H, Celio H, Liu Y Y, Manthiram A. Uncovering the solvation structure of lipf-based localized saturated electrolytes and their effect on linio-based lithium-metal batteries[J]. Adv. Energy Mater., 2022, 12(36): 202201911. http://dx.doi.org/10.1002/aenm.202201911. |
| [202] | Sun N N, Li R H, Zhao Y, Zhang H K, Chen J H, Xu J T, Li Z D, Fan X L, Yao X Y, Peng Z. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery[J]. Adv. Energy Mater., 2022, 12(42): 202200621. http://dx.doi.org/10.1002/aenm.202200621. |
| [203] | Cai W L, Deng Y, Deng Z W, Jia Y, Li Z H, Zhang X M, Xu C H Y, Zhang X Q, Zhang Y, Zhang Q. Quasi-localized high-concentration electrolytes for high-voltage lithium metal batteries[J]. Adv. Energy Mater., 2023, 13(31): 202301396. http://dx.doi.org/10.1002/aenm.202301396. |
| [204] | Efaw C M, Wu Q S, Gao NSJ, Zhang Y G, Zhu H Y, Gering K, Hurley M F, Xiong H, Hu E Y, Cao X, Xu W, Zhang J G, Dufek E J, Xiao J, Yang X Q, Liu J, Qi Y, Li B. Localized high-concentration electrolytes get more localized through micelle-like structures[J]. Nat. Mater., 2023, 22(12): 1531-1539. http://dx.doi.org/10.1038/s41563-023-01700-3. |
| [205] | Liu Q Q, Liu Y, Chen Z R, Ma Q, Hong Y R, Wang J H, Xu Y F, Zhao W, Hu Z K, Hong X, Wang J W, Fan X L, Wu H B. An inorganic‐dominate molecular diluent enables safe localized high concentration electrolyte for high‐voltage lithium‐metal batteries[J]. Adv. Funct. Mater., 2022, 33(6): 202209725. http://dx.doi.org/10.1002/adfm.202209725. |
| [206] | Wang A X, Song Y N, Zhao Z F, Li X, Hu Z L, Luo J Y. Solvation engineering enables high-voltage lithium ion and metal batteries operating under-50 and 80 °C[J]. Adv. Funct. Mater., 2023, 33(35): 202302503. http://dx.doi.org/10.1002/adfm.202302503. |
| [207] | Wu M, Wang Z Y, Zhang W R, Jayawardana C, Li Y, Chen F, Nan B, Lucht B L, Wang C S. High-performance lithium metal batteries enabled by a fluorinated cyclic ether with a low reduction potential[J]. Angew. Chem. Int. Ed., 2023, 62(8): e202216169. http://dx.doi.org/10.1002/anie.202216169. |
| [208] | Wu Z C, Li R H, Zhang S Q, Lv L, Deng T, Zhang H, Zhang R X, Liu J J, Ding S H, Fan L W, Chen L X, Fan X L. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries[J]. Chem, 2023, 9(3): 650-664. http://dx.doi.org/10.1016/j.chempr.2022.10.027. |
| [209] | Zhang H, Zeng Z Q, Ma F F, Wang X L, Wu Y K, Liu M C, He R J, Cheng S J, Xie J. Juggling formation of hf and lif to reduce crossover effects in carbonate electrolyte with fluorinated cosolvents for high‐voltage lithium metal batteries[J]. Adv. Funct. Mater., 2022, 33(4): 202212000. http://dx.doi.org/10.1002/adfm.202212000. |
| [210] | Hai F, Yi Y K, Xiao Z C, Guo J Y, Gao X, Chen W T, Xue W C, Hua W B, Tang W, Li M T. A low-cost, fluorine-free localized highly concentrated electrolyte toward ultra-high loading lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(17): 202304253. http://dx.doi.org/10.1002/aenm.202304253. |
| [211] | Jie Y L, Wang S Y, Weng S T, Liu Y, Yang M, Tang C, Li X P, Zhang Z F, Zhang Y C, Chen Y W, Huang F Y, Xu Y L, Li W X, Guo Y Z, He Z X, Ren X D, Lu Y H, Yang K, Cao S C, Lin H, Cao R G, Yan P F, Cheng T, Wang X F, Jiao S H, Xu D S. Towards long-life 500 wh kg lithium metal pouch cells via compact ion-pair aggregate electrolytes[J]. Nat. Energy, 2024: 987-998. http://dx.doi.org/10.1038/s41560-024-01565-z. |
| [212] | Kim Y M, Park B K, Kang S Y, Yang S J, Choi S H, Yoo D J, Kim K J. Bespoke dual-layered interface enabled by cyclic ether in localized high-concentration electrolytes for lithium metal batteries[J]. Adv. Funct. Mater., 2024, 34(48): 202408365. http://dx.doi.org/10.1002/adfm.202408365. |
| [213] | Lee K, Kwon S H, Kim J, Park E, Kim I, Ahn H C, Coskun A, Choi J W. Fluorinated cyclic ether diluent for high-voltage lithium metal batteries[J]. ACS Energy Lett., 2024, 9(5): 2201-2211. http://dx.doi.org/10.1021/acsenergylett.4c00481. |
| [214] | Li G X, Koverga V, Nguyen A, Kou R, Ncube M, Jiang H, Wang K, Liao M, Guo H Z, Chen J, Dandu N, Ngo A T, Wang D H. Enhancing lithium-metal battery longevity through minimized coordinating diluent[J]. Nat. Energy, 2024, 9(7): 817-827. http://dx.doi.org/10.1038/s41560-024-01519-5. |
| [215] | Liu Z Y, Huang W Z, Xiao Y, Zhang J D, Kong W J, Wu P, Zhao C Z, Chen A B, Zhang Q. Nanocomposite current collectors for anode-free all-solid-state lithium batteries[J]. Acta Phys.-Chim. Sin., 2024, 40(3): 2305040. http://dx.doi.org/10.3866/Pku.Whxb202305040. |
| [216] | Zhao Z, Wang A, Chen A, Zhao Y, Hu Z, Wu K, Luo J. Leveraging ion pairing and transport in localized high-concentration electrolytes for reversible lithium metal anodes at low temperatures[J]. Angew. Chem. Int. Ed., 2024, 63(45): e202412239. http://dx.doi.org/10.1002/anie.202412239. |
| [217] | Chen L, Zhang Q, Song C L, Jiang Y X, Sheng X T, Pan H J, Yang L, Wu S M, Zeng L, Sun D L, Wang C, Wang T S, Li Y J, Zhao T S. A "flexible" solvent molecule enabling high-performance lithium metal batteries[J]. Angew. Chem. Int. Ed., 2025, 64(15): e202422791. http://dx.doi.org/10.1002/anie.202422791. |
| [218] | Xu R, Ding J F, Ma X X, Yan C, Yao Y X, Huang J Q. Designing and demystifying the lithium metal interface toward highly reversible batteries[J]. Adv. Mater., 2021, 33(52): e2105962. http://dx.doi.org/10.1002/adma.202105962. |
| [219] | Chen J W, Zhang D M, Zhu L, Liu M Z, Zheng T L, Xu J, Li J, Wang F, Wang Y G, Dong X L, Xia Y Y. Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries[J]. Nat. Commun., 2024, 15(1): 3217. http://dx.doi.org/10.1038/s41467-024-47448-5. |
| [220] | Yang Y R, Li Q, Li H, Ruan J F, Wang F M, Li Z Y, Yang J Y, Zhang J Y, Caglayan U, Sun D L, Fang F, Kunduraci M, Wang F. Weakly solvating cyclic ether-based deep eutectic electrolytes for stable high-temperature lithium metal batteries[J]. Angew. Chem. Int. Ed., 2025, 64(7): e202419653. http://dx.doi.org/10.1002/anie.202419653. |
| [221] | Chen Y L, Yu Z, Rudnicki P, Gong H X, Huang Z J, Kim S C, Lai J C, Kong X, Qin J, Cui Y, Bao Z N. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery[J]. J. Am. Chem. Soc., 2021, 143(44): 18703-18713. http://dx.doi.org/10.1021/jacs.1c09006. |
| [222] | Qiao R, Zhao Y, Zhou S J, Zhang H J, Liu F Z, Zhou T H, Sun B Y, Fan H, Li C, Zhang Y H, Liu F, Ding X D, Choi J W, Coskun A, Song J X. Non-fluorinated electrolytes with micelle-like solvation for ultra-high-energy-density lithium metal batteries[J]. Chem, 2025, 11(2): 102306. http://dx.doi.org/10.1016/j.chempr.2024.09.005. |
| [223] | Choi I, Chen Y L, Shah A D T Y, Florian J, Serrao C, Holoubek J, Lyu H, Zhang E L Z B, Lee J H, Lin Y J, Kim S C, Park H, Zhang P, Lee J Y, Qin J, Cui Y, Bao Z A. Asymmetric ether solvents for high-rate lithium metal batteries[J]. Nat. Energy, 2025, 10(3): 365-379. http://dx.doi.org/10.1038/s41560-025-01716-w. |
| [224] | Chen J H, Lu H C, Kong X R, Liu J, Liu J Q, Yang J, Nuli Y, Wang J L. Interphase engineering via solvent molecule chemistry for stable lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(23): e202317923. http://dx.doi.org/10.1002/anie.202317923. |
| [225] | Deng L Q, Dong L T, Wang Z F, Liu Y Y, Zhan J, Wang S H, Song K P, Qi D Q, Sang Y H, Liu H, Chen H. Asymmetrically‐fluorinated electrolyte molecule design for simultaneous achieving good solvation and high inertness to enable stable lithium metal batteries[J]. Adv. Energy Mater., 2023, 14(4): 202303652. http://dx.doi.org/10.1002/aenm.202303652. |
| [226] | Wu L Q, Li Z, Fan Z Y, Li K, Li J, Huang D B, Li A J, Yang Y, Xie W W, Zhao Q. Unveiling the role of fluorination in hexacyclic coordinated ether electrolytes for high-voltage lithium metal batteries[J]. J. Am. Chem. Soc., 2024, 146(9): 5964-5976. http://dx.doi.org/10.1021/jacs.3c11798. |
| [227] | Zhou T H, Zhao Y, El Kazzi M, Choi J W, Coskun A. Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2022, 61(19): e202115884. http://dx.doi.org/10.1002/anie.202115884. |
| [228] | Li Y Q, Liu M Z, Wang K, Li C F, Lu Y, Choudhary A, Ottley T, Bedrov D, Xing L D, Li W S. Single-solvent-based electrolyte enabling a high-voltage lithium-metal battery with long cycle life[J]. Adv. Energy Mater., 2023, 13(30): 202300918. http://dx.doi.org/10.1002/aenm.202300918. |
| [229] | Mao M L, Ji X, Wang Q Y, Lin Z J, Li M Y, Liu T, Wang C L, Hu Y S, Li H, Huang X J, Chen L Q, Suo L M. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries[J]. Nat. Commun., 2023, 14(1): 1082. http://dx.doi.org/10.1038/s41467-023-36853-x. |
| [230] | Piao Z, Wu X, Ren H R, Lu G, Gao R, Zhou G, Cheng H M. A semisolvated sole-solvent electrolyte for high-voltage lithium metal batteries[J]. J. Am. Chem. Soc., 2023, 145(44): 24260-24271. http://dx.doi.org/10.1021/jacs.3c08733. |
| [231] | Mominur Rahman M, Hu E. Electron delocalization enables sulfone-based single-solvent electrolyte for lithium metal batteries[J]. Angew. Chem. Int. Ed., 2023, 62(44): e202311051. http://dx.doi.org/10.1002/anie.202311051. |
| [232] | Zhang H K, Li R H, Chen L, Fan Y Z, Zhang H, Zhang R X, Zheng L, Zhang J B, Ding S H, Wu Y J, Ma B C, Zhang S Q, Deng T, Chen L X, Shen Y B, Fan X L. Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries[J]. Angew. Chem. Int. Ed., 2023, 62(11): e202218970. http://dx.doi.org/10.1002/anie.202218970. |
| [233] | Zou Y G, Liu G, Wang Y Q, Li Q, Ma Z, Yin D M, Liang Y, Cao Z, Cavallo L, Kim H, Wang L M, Alshareef H N, Sun Y K, Ming J. Intermolecular interactions mediated nonflammable electrolyte for high-voltage lithium metal batteries in wide temperature[J]. Adv. Energy Mater., 2023, 13(19): 202300443. http://dx.doi.org/10.1002/aenm.202300443. |
| [234] | Fu J L, Ji X, Chen J, Chen L, Fan X L, Mu D B, Wang C S. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22194-22201. http://dx.doi.org/10.1002/anie.202009575. |
| [235] | Li S Y, Zhang W D, Wu Q, Fan L, Wang X Y, Wang X, Shen Z Y, He Y, Lu Y Y. Synergistic dual-additive electrolyte enables practical lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2020, 59(35): 14935-14941. http://dx.doi.org/10.1002/anie.202004853. |
| [236] | Xie J, Sun S Y, Chen X, Hou L P, Li B Q, Peng H J, Huang J Q, Zhang X Q, Zhang Q. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2022, 61(29): e202204776. http://dx.doi.org/10.1002/anie.202204776. |
| [237] | Zhang Q K, Sun S Y, Zhou M Y, Hou L P, Liang J L, Yang S J, Li B Q, Zhang X Q, Huang J Q. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries[J]. Angew. Chem. Int. Ed., 2023, 62(42): e202306889. http://dx.doi.org/10.1002/anie.202306889. |
| [238] | Jin C B, Liu T F, Sheng O W, Li M, Liu T C, Yuan Y F, Nai J W, Ju Z J, Zhang W K, Liu Y J, Wang Y, Lin Z, Lu J, Tao X Y. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nat. Energy, 2021, 6(4): 378-387. http://dx.doi.org/10.1038/s41560-021-00789-7. |
| [239] | Jiang C, Jia Q Q, Tang M, Fan K, Chen Y, Sun M X, Xu S F, Wu Y C, Zhang C Y, Ma J, Wang C L, Hu W P. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes[J]. Angew. Chem. Int. Ed., 2021, 60(19): 10871-10879. http://dx.doi.org/10.1002/anie.202101976. |
| [240] | Gao Y H, Wu G, Fang W Q, Qin Z S, Zhang T, Yan J X, Zhong Y P, Zhang N, Chen G. Transesterification induced multifunctional additives enable high-performance lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(22): e202403668. http://dx.doi.org/10.1002/anie.202403668. |
| [241] | Zhang Y J, Wu Y, Li H Y, Chen J H, Lei D N, Wang C X. A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries[J]. Nat. Commun., 2022, 13(1): 1297. http://dx.doi.org/10.1038/s41467-022-28959-5. |
| [242] | Li Z D, Chen Z L, Sun N N, Wang D Y, Yao X Y, Peng Z. Large organic polar molecules tailored electrode interfaces for stable lithium metal battery[J]. Angew. Chem. Int. Ed., 2024, 63(19): e202400876. http://dx.doi.org/10.1002/anie.202400876. |
| [243] | Tang T X, Sun C, Li Y, Tong M M, Lu J, Lai C. Long-lifespan 522 Wh kg-1lithium metal pouch cell enabled by compound additives engineering[J]. Angew. Chem. Int. Ed., 2025, 64(5): e202417471. http://dx.doi.org/10.1002/anie.202417471. |
| [244] | Xie W X, Wu J X, Li X Y, Song Z G, Tong L J, Miao Y H, Li M X, Li X, Wang M X, Chen Y, Chen X C, Chen Y M. Synergizing interfacial electric field regulation and in situ robust interphases for stable lithium metal batteries at high currents[J]. Angew. Chem. Int. Ed., 2025, 64(15): e202501005. http://dx.doi.org/10.1002/anie.202501005. |
| [245] | Yan C, Yao Y X, Chen X, Cheng X B, Zhang X Q, Huang J Q, Zhang Q. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angew. Chem. Int. Ed., 2018, 57(43): 14055-14059. http://dx.doi.org/10.1002/anie.201807034. |
| [246] | Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Adv. Funct. Mater., 2017, 27(10): 201605989. http://dx.doi.org/10.1002/adfm.201605989. |
| [247] | Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries[J]. J. Electrochem. Soc., 2015, 162(6): A1094-A1101. http://dx.doi.org/10.1149/2.0011507jes. |
| [248] | Yang L, Smith C, Patrissi C, Schumacher C R, Lucht B L. Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes[J]. J. Power Sources, 2008, 185(2): 1359-1366. http://dx.doi.org/10.1016/j.jpowsour.2008.09.037. |
| [249] | Yang T, Yang H X, Zou J H, Li L, Wu S L, Zhao M N, Jiang Z P, Li Y T. Stable cyclic ether as an electrolyte additive for high-performance lithium metal batteries[J]. Chem. Commun., 2024, 60(64): 8435-8438. http://dx.doi.org/10.1039/d4cc03056g. |
| [250] | Schedlbauer T, Krüger S, Schmitz R, Schmitz R W, Schreiner C, Gores H J, Passerini S, Winter M. Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries?[J]. Electrochim. Acta, 2013, 92: 102-107. http://dx.doi.org/10.1016/j.electacta.2013.01.023. |
| [251] | Yu L, Chen S R, Lee H, Zhang L C, Engelhard M H, Li Q Y, Jiao S H, Liu J, Xu W, Zhang J G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries[J]. ACS Energy Lett., 2018, 3(9): 2059-2067. http://dx.doi.org/10.1021/acsenergylett.8b00935. |
| [252] | Ota H, Shima K, Ue M, Yamaki J. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode[J]. Electrochim. Acta, 2004, 49(4): 565-572. http://dx.doi.org/10.1016/j.electacta.2003.09.010. |
| [253] | Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q Y, Wang D Y, Xu W, Zhang J G. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Adv. Funct. Mater., 2020, 30(24): 202001285. http://dx.doi.org/10.1002/adfm.202001285. |
| [254] | Zhang X Q, Chen X, Hou L P, Li B Q, Cheng X B, Huang J Q, Zhang Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Lett., 2019, 4(2): 411-416. http://dx.doi.org/10.1021/acsenergylett.8b02376. |
| [255] | Jie Y L, Xu Y L, Chen Y W, Xie M, Liu Y, Huang F Y, Kochovski Z, Lei Z W, Zheng L, Song P D, Hu C S, Qi Z M, Li X P, Wang S Y, Shen Y B, Chen L W, You Y Z, Ren X D, Goddard W A, Cao R G, Lu Y, Cheng T, Xu K, Jiao S H. Molecular understanding of interphase formation via operando polymerization on lithium metal anode[J]. Cell Rep. Phys. Sci., 2022, 3(10): 101057. http://dx.doi.org/10.1016/j.xcrp.2022.101057. |
| [256] | Xu Q S, Li T, Ju Z J, Chen G X, Ye D Q, Waterhouse G I N, Lu Y Y, Lai X J, Zhou G M, Guo L, Yan K Y, Tao X Y, Li H, Qiu Y C. Li2ZrF6-based electrolytes for durable lithium metal batteries[J]. Nature, 2025, 637(8045): 339-346. http://dx.doi.org/10.1038/s41586-024-08294-z. |
| [257] | Wang Z X, Qi F L, Yin L C, Shi Y, Sun C G, An B G, Cheng H M, Li F. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes[J]. Adv. Energy Mater., 2020, 10(14): 201903843. http://dx.doi.org/10.1002/aenm.201903843. |
| [258] | Fu X X, Deng X H, Deng Y J, Xiong X H, Zheng Y Y, Zhang Z, Dang D, Wang G. Lithium perchlorate additive for dendritic-free and long-life Li metal batteries[J]. Energy & Fuels, 2022, 36(18): 11219-11226. http://dx.doi.org/10.1021/acs.energyfuels.2c02242. |
| [259] | Zhuang J C, Wang X S, Xu M Q, Chen Z, Liu M Z, Cheng X Q, Li W S. A self-healing interface on lithium metal with lithium difluoro (bisoxalato) phosphate for enhanced lithium electrochemistry[J]. J. Mater. Chem. A, 2019, 7(45): 26002-26010. http://dx.doi.org/10.1039/c9ta09539j. |
| [260] | Wang Y K, Ni Y X, Xu S, Lu Y, Shang L, Yang Z, Zhang K, Yan Z H, Xie W W, Chen J. Fully methylated siloxane-based electrolyte for practical lithium metal batteries[J]. J. Am. Chem. Soc., 2025, 147(12): 10772-10783. http://dx.doi.org/10.1021/jacs.5c02140. |
| [261] | Yang Y S, Wang X F, Zhu J C, Tan L L, Li N, Chen Y F, Wang L L, Liu Z Q, Yao X Y, Wang X F, Ji X, Zhu Y J. Dilute electrolytes with fluorine-free ether solvents for 4.5 V lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(40): e202409193. http://dx.doi.org/10.1002/anie.202409193. |
| [262] | Yu Z A, Mackanic D G, Michaels W, Lee M, Pei A, Feng D W, Zhang Q H, Tsao Y C, Amanchukwu C V, Yan X Z, Wang H S, Chen S C, Liu K, Kang J, Qin J, Cui Y, Bao Z N. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes[J]. Joule, 2019, 3(11): 2761-2776. http://dx.doi.org/10.1016/j.joule.2019.07.025. |
| [263] | Yuan Y X, Wu F, Bai Y, Li Y, Chen G H, Wang Z H, Wu C. Regulating Li deposition by constructing lif-rich host for dendrite-free lithium metal anode[J]. Energy Stor. Mater., 2019, 16: 411-418. http://dx.doi.org/10.1016/j.ensm.2018.06.022. |
| [264] | Liu Y Y, Xu X Y, Kapitanova O O, Evdokimov P, Song Z X, Matic A, Xiong S Z. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes[J]. Adv. Energy Mater., 2022, 12(9): 202103589. http://dx.doi.org/10.1002/aenm.202103589. |
| [265] | Liu W, Liu P C, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Adv. Energy Mater., 2020, 10(43): 2002297. http://dx.doi.org/https://doi.org/10.1002/aenm.202002297. |
| [266] | Liu F F, Wang L F, Zhang Z W, Shi P C, Feng Y Z, Yao Y, Ye S F, Wang H Y, Wu X J, Yu Y. A mixed lithium-ion conductive lis/lise protection layer for stable lithium metal anode[J]. Adv. Funct. Mater., 2020, 30(23): 202001607. http://dx.doi.org/10.1002/adfm.202001607. |
| [267] | Wang Z J, Wang Y Y, Zhang Z H, Chen X W, Lie W, He Y B, Zhou Z, Xia G L, Guo Z P. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes[J]. Adv. Funct. Mater., 2020, 30(30): 202002414. http://dx.doi.org/10.1002/adfm.202002414. |
| [268] | Ye S F, Wang L F, Liu F F, Shi P C, Wang H, Wu X J, Yu Y. G‐C3N4derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode[J]. Adv. Energy Mater., 2020, 10(44): 202002647. http://dx.doi.org/10.1002/aenm.202002647. |
| [269] | Fan L S, Sun B, Yan K, Xiong P, Guo X, Guo Z K, Zhang N Q, Feng Y J, Sun K N, Wang G X. A dual-protective artificial interface for stable lithium metal anodes[J]. Adv. Energy Mater., 2021, 11(48): 202102242. http://dx.doi.org/10.1002/aenm.202102242. |
| [270] | Gu Y P, Hu J L, Lei M, Li W B, Li C L. Electrochemical activation of ordered mesoporous solid electrolyte interphases to enable ultra‐stable lithium metal batteries[J]. Adv. Energy Mater., 2023, 14(4): 202302174. http://dx.doi.org/10.1002/aenm.202302174. |
| [271] | Zhai P B, Wang T S, Jiang H N, Wan J Y, Wei Y, Wang L, Liu W, Chen Q, Yang W W, Cui Y, Gong Y J. 3d artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Adv. Mater., 2021, 33(13): e2006247. http://dx.doi.org/10.1002/adma.202006247. |
| [272] | Qian S S, Xing C, Zheng M T, Su Z, Chen H, Wu Z Z, Lai C, Zhang S Q. Cucl-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes[J]. Adv. Energy Mater., 2022, 12(15): 202103480. http://dx.doi.org/10.1002/aenm.202103480. |
| [273] | Qin J L, Pei F, Wang R, Wu L, Han Y, Xiao P, Shen Y, Yuan L X, Huang Y H, Wang D L. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 wh kg-1 lithium metal batteries[J]. Adv. Mater., 2024, 36(21): e2312773. http://dx.doi.org/10.1002/adma.202312773. |
| [274] | Yang Q F, Hu J L, Yao Z G, Liu J J, Li C L. Durable Li2CN2 solid electrolyte interphase wired by carbon nanodomains via in situ interface lithiation to enable long‐cycling Li metal batteries[J]. Adv. Funct. Mater., 2022, 33(3): 202206778. http://dx.doi.org/10.1002/adfm.202206778. |
| [275] | Zhai P B, He Q Q, Jiang H N, Gao B Y, Zhang B, Chen Q, Yang Z L, Wang T S, Gong Y J. Thickness‐dependence of 2D g‐C3N4 artificial interface layers on lithium metal deposition[J]. Adv. Energy Mater., 2023, 14(5): 202302730. http://dx.doi.org/10.1002/aenm.202302730. |
| [276] | Di J, Yang J L, Tian H, Ren P F, Deng Y R, Tang W H, Yan W Q, Liu R P, Ma J M. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering[J]. Adv. Funct. Mater., 2022, 32(23): 202200474. http://dx.doi.org/10.1002/adfm.202200474. |
| [277] | Pang M, Jiang Z W, Luo C Y, Yao Z Q, Fu T J, Pan T, Guo Q P, Li Y J, Xiong S Z, Zheng C M, Sun W W, Zhou G M, Liu S K. A surface chemistry-regulated gradient multi-component solid electrolyte interphase for a 460 w h kg lithium metal pouch cell[J]. Energy Environ. Sci., 2024, 17(20): 7699-7711. http://dx.doi.org/10.1039/d4ee02311k. |
| [278] | Shen C L, Meng J S, Yan M Y, Liao X B, Wang H, Feng W C, Yu Y K, Zhou C, Gong M J, Mai L Q, Xu X. Catalytic growth of ionic conductive lithium nitride nanowire array for dendrite-free lithium metal anode[J]. Adv. Funct. Mater., 2024, 34(44): 202406445. http://dx.doi.org/10.1002/adfm.202406445. |
| [279] | Li Y B, Sun Y M, Pei A, Chen K F, Vailionis A, Li Y Z, Zheng G Y, Sun J, Cui Y. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Cent. Sci., 2018, 4(1): 97-104. http://dx.doi.org/10.1021/acscentsci.7b00480. |
| [280] | Li C, Liang Z Y, Li Z Z, Cao D F, Zuo D X, Chang J, Wang J, Deng Y H, Liu K, Kong X, Wan J Y. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries[J]. Nano Lett., 2023, 23(9): 4014-4022. http://dx.doi.org/10.1021/acs.nanolett.3c00783. |
| [281] | Chen C, Zhang J M, Hu B R, Liang Q W, Xiong X H. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nat. Commun., 2023, 14(1): 4018. http://dx.doi.org/10.1038/s41467-023-39636-6. |
| [282] | Zhang C H, Xie J Y, Zhao C T, Yang Y X, An Q, Mei Z Y, Xu Q J, Ding Y Q, Zhao G F, Guo H. Regulating the lithium ions' local coordination environment through designing a COF with single atomic Co site to achieve dendrite-free lithium-metal batteries[J]. Adv. Mater., 2023, 35(40): e2304511. http://dx.doi.org/10.1002/adma.202304511. |
| [283] | Burger S, Skrotzki J, Büttner J, Beichel W, Klose P, Welle A, Fischer A, Krossing I. Toward realistic full cells with protected lithium-metal-anodes: The effect of an adaptive self-healing artificial SEI[J]. Adv. Energy Mater., 2024, 15(13): 2403195. http://dx.doi.org/10.1002/aenm.202403195. |
| [284] | Ma C, Zou S H, Wu Y X, Yue K, Cai X H, Wang Y, Nai J, Guo T Q, Tao X Y, Liu Y J. A triply-periodic-minimal-surface structured interphase based on fluorinated polymers strengthening high-energy lithium metal batteries[J]. Angew. Chem., 2024, 63(20): e202402910. http://dx.doi.org/10.1002/anie.202402910. |
| [285] | Shi Z Q, Wang Y M, Yue X Y, Zhao J, Fang M M, Liu J J, Chen Y M, Dong Y T, Yan X Z, Liang Z. Mechanically interlocked interphase with energy dissipation and fast Li-ion transport for high-capacity lithium metal batteries[J]. Adv. Mater., 2024, 36(23): e2401711. http://dx.doi.org/10.1002/adma.202401711. |
| [286] | Song H, Lee J, Sagong M, Jeon J, Han Y, Kim J, Jung H G, Yu J S, Lee J, Kim I D. Overcoming chemical and mechanical instabilities in lithium metal anodes with sustainable and eco-friendly artificial SEI layer[J]. Adv. Mater., 2024, 36(47): e2407381. http://dx.doi.org/10.1002/adma.202407381. |
| [287] | Wu X Y, Zhang S Q, Xu X Y, Wen F X, Wang H W, Chen H Z, Fan X L, Huang N. Lithiophilic covalent organic framework as anode coating for high-performance lithium metal batteries[J]. Angew. Chem., 2024, 63(11): e202319355. http://dx.doi.org/10.1002/anie.202319355. |
| [288] | Zheng S, Bi S, Fu Y B, Wu Y, Liu M H, Xu Q, Zeng G F. 3d crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries[J]. Adv. Mater., 2024, 36(21): e2313076. http://dx.doi.org/10.1002/adma.202313076. |
| [289] | Huang Z J, Lai J C, Liao S L, Yu Z, Chen Y L, Yu W L, Gong H X, Gao X, Yang Y F, Qin J, Cui Y, Bao Z A. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes[J]. Nat. Energy, 2023, 8(6): 577-585. http://dx.doi.org/10.1038/s41560-023-01252-5. |
| [290] | Li S M, Huang J L, Cui Y, Liu S H, Chen Z R, Huang W, Li C F, Liu R L, Fu R W, Wu D C. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nat. Nanotechnol., 2022, 17(6): 613-621. http://dx.doi.org/10.1038/s41565-022-01107-2. |
| [291] | Hu A J, Chen W, Du X C, Hu Y, Lei T Y, Wang H B, Xue L X, Li Y Y, Sun H, Yan Y C, Long J P, Shu C Z, Zhu J, Li B H, Wang X F, Xiong J. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode[J]. Energy Environ. Sci., 2021, 14(7): 4115-4124. http://dx.doi.org/10.1039/d1ee00508a. |
| [292] | Jiang G Y, Li K Y, Yu F, Li X L, Mao J Y, Jiang W W, Sun F G, Dai B, Li Y S. Robust artificial solid-electrolyte interfaces with biomimetic ionic channels for dendrite-free Li metal anodes[J]. Adv. Energy Mater., 2021, 11(6): 202003496. http://dx.doi.org/10.1002/aenm.202100295. |
| [293] | Sun Y P, Zhao C T, Adair K R, Zhao Y, Goncharova L V, Liang J N, Wang C H, Li J, Li R Y, Cai M, Sham T K, Sun X L. Regulated lithium plating and stripping by a nano-scale gradient inorganic-organic coating for stable lithium metal anodes[J]. Energy Environ. Sci., 2021, 14(7): 4085-4094. http://dx.doi.org/10.1039/d1ee01140e. |
| [294] | Yu Z A, Seo S, Song J C, Zhang Z W, Oyakhire S T, Wang Y, Xu R, Gong H X, Zhang S, Zheng Y, Tsao Y, Mondonico L, Lomeli E G, Wang X C, Kim W, Ryu K, Bao Z N. A solution-processable high-modulus crystalline artificial solid electrolyte interphase for practical lithium metal batteries[J]. Adv. Energy Mater., 2022, 12(30): 202201025. http://dx.doi.org/10.1002/aenm.202201025. |
| [295] | Cheng Y F, Wang Z J, Chen J B, Chen Y M, Ke X, Wu D J, Zhang Q, Zhu Y M, Yang X M, Gu M, Guo Z P, Shi Z C. Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA cm-2and 20 mAh cm-2[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202305723. http://dx.doi.org/10.1002/anie.202305723. |
| [296] | Jang K, Song H J, Park J B, Jung S W, Kim D W. Magnesium fluoride-engineered uio-66 artificial protection layers for dendrite-free lithium metal batteries[J]. Energy Environ. Sci., 2024, 17(13): 4622-4633. http://dx.doi.org/10.1039/d4ee01428f. |
| [297] | Lu X M, Cao Y N, Sun Y, Wang H C, Sun W W, Xu Y, Wu Y, Yang C, Wang Y. Sp-carbon-conjugated organic polymer as multifunctional interfacial layers for ultra-long dendrite-free lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(15): e202320259. http://dx.doi.org/10.1002/anie.202320259. |
| [298] | Liu H, Zhen F X, Yin X K, Wu Y B, Yu K L, Kong X P, Ding S J, Yu W. Ultra-tough dynamic supramolecular ion-conducting elastomer induced uniform Li+ transport and stabilizes interphase ensures dendrite-free lithium metal anodes[J]. Angew. Chem. Int. Ed., 2025, 64(2): e202414599. http://dx.doi.org/10.1002/anie.202414599. |
| [299] | Yu Y Z, Long K C, Huang S Z, Yu S Y, Yang J X, Naren T, Chen Y J, Wei W F, Ji X B, Ju B W, Kuang G C, Chen L B. Bilayer artificial solid electrolyte interphase with 75 gpa young's modulus enable high energy density lithium metal pouch cells[J]. Adv. Funct. Mater., 2025, 35(24): 202424386. http://dx.doi.org/10.1002/adfm.202424386. |
| [300] | Gao Y, Yan Z F, Gray J L, He X, Wang D W, Chen T H, Huang Q Q, Li Y C, Wang H Y, Kim S H, Mallouk T E, Wang D H. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions[J]. Nat. Mater., 2019, 18(4): 384-389. http://dx.doi.org/10.1038/s41563-019-0305-8. |
| [301] | Gao Y, Rojas T, Wang K, Liu S, Wang D W, Chen T H, Wang H Y, Ngo A T, Wang D H. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface[J]. Nat. Energy, 2020, 5(7): 534-542. http://dx.doi.org/10.1038/s41560-020-0640-7. |
| [302] | Wang T S, Liu X B, Zhao X D, He P G, Nan C W, Fan L Z. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Adv. Funct. Mater., 2020, 30(16): 202000786. http://dx.doi.org/10.1002/adfm.202000786 |
| [303] | Zhou T, Shen J D, Wang Z S, Liu J, Hu R Z, Ouyang L Z, Feng Y Z, Liu H, Yu Y, Zhu M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode[J]. Adv. Funct. Mater., 2020, 30(14): 201909159. http://dx.doi.org/10.1002/adfm.201909159. |
| [304] | Gao C W, Jiang Z J, Qi S B, Wang P X, Jensen L R, Johansen M, Christensen C K, Zhang Y F, Ravnsbaek D B, Yue Y Z. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries[J]. Adv. Mater., 2022, 34(10): e2110048. http://dx.doi.org/10.1002/adma.202110048. |
| [305] | Qin W L, Han D D, Zhang X W, Ma H Y, Wu Y, Li Z G, Bi S, Zhai L P. Redox-active metal-covalent organic frameworks for dendrite-free lithium metal batteries[J]. Adv. Mater., 2025, 37(14): e2418638. http://dx.doi.org/10.1002/adma.202418638. |
| [306] | Xu Z X, Xu L Y, Xu Z X, Deng Z P, Wang X L. N, O-codoped carbon nanosheet array enabling stable lithium metal anode[J]. Adv. Funct. Mater., 2021, 31(40): 202102354. http://dx.doi.org/10.1002/adfm.202102354. |
| [307] | Yang T Y, Li L, Zhao T, Ye Y S, Ye Z Q, Xu S N, Wu F, Chen R J. From flower-like to spherical deposition: A gcnt aerogel scaffold for fast-charging lithium metal batteries[J]. Adv. Energy Mater., 2021, 11(42): 202102454. http://dx.doi.org/10.1002/aenm.202102454. |
| [308] | Liu Y C, Yuan B Y, Sun C, Lu Y H, Lin X P, Chen M H, Xie Y S, Zhang S Q, Lai C. Ultralow-expansion lithium metal composite anode via gradient framework design[J]. Adv. Funct. Mater., 2022, 32(35): 202202771. http://dx.doi.org/10.1002/adfm.202202771. |
| [309] | Park J B, Choi C, Yu S, Chung K Y, Kim D W. Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate[J]. Adv. Energy Mater., 2021, 11(37): 202101544. http://dx.doi.org/10.1002/aenm.202101544. |
| [310] | Li Y J, Li J P, Xiao H, Xie T C, Zheng W T, He J L, Zhu H J, Huang S M. A novel 3d Li/Li9-Al4/Li-Mg alloy anode for superior lithium metal batteries[J]. Adv. Funct. Mater., 2023, 33(14): 202213905. http://dx.doi.org/10.1002/adfm.202213905. |
| [311] | Liang H M, Wang L Y, He Y F, Ren D S, Song Y Z, Yang K, Wang A P, Yi Y Y, Wang L, Sun Y M, He X M. Boosting the intrinsic stability of lithium metal anodes by an electrochemically active encapsulating framework[J]. Adv. Energy Mater., 2023, 13(45): 202302755. http://dx.doi.org/10.1002/aenm.202302755. |
| [312] | Lu Z Y, Liang Q H, Wang B, Tao Y, Zhao Y F, Lv W, Liu D H, Zhang C, Weng Z, Liang J C, Li H, Yang Q H. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Adv. Energy Mater., 2019, 9(7): 201803186. http://dx.doi.org/10.1002/aenm.201803186. |
| [313] | Wang H S, Lin D C, Xie J, Liu Y Y, Chen H, Li Y B, Xu J W, Zhou G M, Zhang Z W, Pei A, Zhu Y Y, Liu K, Wang K C, Cui Y. An interconnected channel-like framework as host for lithium metal composite anodes[J]. Adv. Energy Mater., 2019, 9(7): 201802720. http://dx.doi.org/10.1002/aenm.201802720. |
| [314] | Zhou T H, Zhao Y, Choi J W, Coskun A. Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries[J]. Angew. Chem. Int. Ed., 2019, 58(47): 16795-16799. http://dx.doi.org/10.1002/anie.201908513. |
| [315] | Qian X J, Fan X Q, Peng Y L, Xue P, Sun C, Shi X L, Lai C, Liang J J. Polysiloxane cross‐linked mechanically stable mxene‐based lithium host for ultrastable lithium metal anodes with ultrahigh current densities and capacities[J]. Adv. Funct. Mater., 2020, 31(6): 202008044. http://dx.doi.org/10.1002/adfm.202008044. |
| [316] | Pan J J, Shi K X, Wu H, Li J H, Zhang R, Liu Q B, Liang Z X. Lithium dredging and capturing dual-gradient framework enabling step-packed deposition for dendrite-free lithium metal anodes[J]. Adv. Energy Mater., 2023: 202302862. http://dx.doi.org/10.1002/aenm.202302862. |
| [317] | Cai J H, Wang L, Huang Q Y, Yu W C, Xie C, Zheng Z J. A thin, stable, and flexible janus lithium‐textile anode for long‐life and high‐energy lithium metal battery[J]. Adv. Energy Mater., 2023, 14(7): 202303088. http://dx.doi.org/10.1002/aenm.202303088. |
| [318] | Peng H Y, Xu Y S, Wei X Y, Li Y N, Liang X, Wang J, Tan S J, Guo Y G, Cao F F. Anchoring active Li metal in oriented channel by in situ formed nucleation sites enabling durable lithium-metal batteries[J]. Adv. Mater., 2024, 36(24): e2313034. http://dx.doi.org/10.1002/adma.202313034. |
| [319] | Zhao P Y, Zhang Y H, Sun B Y, Qiao R, Li C, Hai P Q, Wang Y C, Liu F, Song J X. Enhancing anion-selective catalysis for stable lithium metal pouch cells through charge separated cof interlayer[J]. Angew. Chem. Int. Ed., 2024, 63(41): e202317016. http://dx.doi.org/10.1002/anie.202317016. |
| [320] | Ding J W, Du T, Jensen L R, Sorensen S S, Wang D Y, Wang S W, Zhang L S, Yue Y Z, Smedskjaer M M. High-performance dendrite-free lithium metal anode based on metal-organic framework glass[J]. Adv. Mater., 2024, 36(29): e2400652. http://dx.doi.org/10.1002/adma.202400652. |
| [321] | Zhu F Y, Wang J, Zhang Y Z, Tu H F, Xia X Q, Zhang J, He H Y, Lin H Z, Liu M N. Low-temperature lithium metal batteries achieved by synergistically enhanced screening Li+ desolvation kinetics[J]. Adv. Mater., 2025, 37(5): e2411601. http://dx.doi.org/10.1002/adma.202411601. |
| [322] | Xu J P, Gu H Y, Wu Y J, Lin Y T, Zhu M H, Liu H L, Lian C, Su H P, Li J K. Sub-nano confinement engineering toward anion-reinforced solvation structure to achieve highly reversible anode-free lithium metal batteries[J]. Adv. Energy Mater., 2025: 202405196. http://dx.doi.org/10.1002/aenm.202405196. |
| [323] | Zhu X Y, Chang Z, Yang H J, Qian Y M, He P, Zhou H S. Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries[J]. Energy Stor. Mater., 2022, 44: 360-369. http://dx.doi.org/10.1016/j.ensm.2021.09.022. |
| [324] | Bai S Y, Sun Y, Yi J, He Y B, Qiao Y, Zhou H S. High-power Li-metal anode enabled by metal-organic framework modified electrolyte[J]. Joule, 2018, 2(10): 2117-2132. http://dx.doi.org/10.1016/j.joule.2018.07.010. |
| [325] | Zhang Y Y, Yao M, Wang T A, Wu H, Zhang Y. A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode[J]. Angew. Chem. Int. Ed., 2024, 63(22): e202403399. http://dx.doi.org/10.1002/anie.202403399. |
| [326] | Ma S B, Zhao J T, Xiao H, Gao Q X, Li F, Song C Y, Li G X. Modulating the inner helmholtz plane towards stable solid electrolyte interphase by anion-pi interactions for high-performance anode-free lithium metal batteries[J]. Angew. Chem. Int. Ed., 2025, 64(1): e202412955. http://dx.doi.org/10.1002/anie.202412955. |
| [327] | Chen D H, Chen C, Yu H, Zheng S Y, Jin T, Li N W, Yu L. Formation of N-doped carbon nanofibers decorated with mop nanoflakes for dendrite-free lithium metal anode[J]. Adv. Funct. Mater., 2024, 34(38): 202402951. http://dx.doi.org/10.1002/adfm.202402951. |
| [328] | Hu X J, Zheng Y P, Li Z W, Xia C, Chua D H C, Hu X, Liu T, Liu X B, Wu Z P, Xia B Y. Artificial lif-rich interface enabled by in situ electrochemical fluorination for stable lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(12): e202319600. http://dx.doi.org/10.1002/anie.202319600. |
| [329] | Liu X T, Tan H M, Li Y T, Wu H, Wu S J, Yang L, Liang Y R, Xu G B, Huang J Y, Wang G, Su J C, Ou X. Constructing fast ion/electron conducting pathway within 3D stable scaffold for dendrite-free lithium metal anode[J]. Adv. Funct. Mater., 2024, 35(15): 202420382. http://dx.doi.org/10.1002/adfm.202420382. |
| [330] | Ye C R, Ni K, Wang J Z, Ye W B, Li S Y, Wang M S, Fan X L, Zhu Y W. Ultrauniform plating of lithium on 10-nm-scale ordered carbon grids for long lifespan lithium metal batteries[J]. Adv. Mater., 2024, 36(31): e2401965. http://dx.doi.org/10.1002/adma.202401965. |
| [331] | Wang J, Zhang J, Wu J, Huang M, Jia L J, Li L G, Zhang Y Z, Hu H F, Liu F Q, Guan Q H, Liu M N, Adenusi H, Lin H Z, Passerini S. Interfacial "single-atom-in-defects" catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries[J]. Adv. Mater., 2023, 35(39): e2302828. http://dx.doi.org/10.1002/adma.202302828. |
| [332] | Yu S C, Wang S, Miao Q S, Hui Z Y, Hyun G, Holoubek J, Yu X L, Gao J W, Liu P. Composite lithium metal structure to mitigate pulverization and enable long-life batteries[J]. Adv. Energy Mater., 2023, 13(40): 202302400. http://dx.doi.org/10.1002/aenm.202302400. |
| [333] | Chen H, Yang Y F, Boyle D T, Jeong Y K, Xu R, de Vasconcelos L S, Huang Z J, Wang H S, Wang H X, Huang W X, Li H Q, Wang J Y, Gu H K, Matsumoto R, Motohashi K, Nakayama Y, Zhao K J, Cui Y. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nat. Energy, 2021, 6(8): 790-798. http://dx.doi.org/10.1038/s41560-021-00833-6. |
| [334] | Jin S, Ye Y D, Niu Y J, Xu Y S, Jin H C, Wang J X, Sun Z W, Cao A M, Wu X J, Luo Y, Ji H X, Wan L J. Solid-solution-based metal alloy phase for highly reversible lithium metal anode[J]. J. Am. Chem. Soc., 2020, 142(19): 8818-8826. http://dx.doi.org/10.1021/jacs.0c01811. |
| [335] | Yue X Y, Zhou Q Y, Bao J, Ma C, Yang S Y, Li X L, Sun D, Fang F, Wu X J, Zhou Y N. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode[J]. Adv. Funct. Mater., 2020, 31(9): 202008786. http://dx.doi.org/10.1002/adfm.202008786. |
| [336] | Zhang H N, Chen P Y, Xia H, Xu G, Wang Y P, Zhang T F, Sun W W, Turgunov M, Zhang W, Sun Z M. An integrated self-healing anode assembled dynamic encapsulation of liquid metal with a 3D tict network for enhanced lithium storage[J]. Energy Environ. Sci., 2022, 15(12): 5240-5250. http://dx.doi.org/10.1039/d2ee02147a. |
| [337] | Zheng L H, Lv R X, Luo C, Guo Y F, Yang M F, Hu K K, Wang K, Li L, Wu F, Chen R J. Amorphous high-entropy alloy interphase for stable lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(40): 202402042. http://dx.doi.org/10.1002/aenm.202402042. |
| [338] | Wang H Q, Mao Y X, Xu P, Ding Y, Yang H P, Li J F, Gu Y, Han J J, Zhang L, Mao B W. Scalable copper current collectors with precisely engineered lithiophilic alloy "skins" for durable lithium-metal batteries[J]. Energy Environ. Sci., 2025, 18(5): 2622-2633. http://dx.doi.org/10.1039/d4ee05862c. |
| [339] | Wang X C, He Y F, Tu S B, Fu L, Chen Z H, Liu S Y, Cai Z, Wang L, He X M, Sun Y M. Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries[J]. Energy Stor. Mater., 2022, 49: 135-143. http://dx.doi.org/10.1016/j.ensm.2022.04.009. |
| [340] | Wu Z H, Wang C Y, Hui Z Y, Liu H D, Wang S, Yu S C, Xing X, Holoubek J, Miao Q S, Xin H L, Liu P. Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries[J]. Nat. Energy, 2023, 8(4): 340-350. http://dx.doi.org/10.1038/s41560-023-01202-1. |
| [341] | An Q, Liu Q, Mao P P, Duan L Y, Zhu H Y, Liu L, Zhao G Q, Zha Y C, Yang L, Sun M J, Fan Y F, Xie F Y, Hu G Z, Guo H. Developing the tandem structure to regulate interfacial chemistry and promote ion transport kinetics toward high-voltage lithium metal batteries[J]. Angew. Chem. Int. Ed., 2025: e202422539. http://dx.doi.org/10.1002/anie.202422539. |
| [342] | Bae M J, Kang M, Piao Y Z. Efficient charge redistribution achieved by 3D micromagnetic fields for dendrite-free lithium metal batteries[J]. Adv. Funct. Mater., 2025, 35(29): 202421952. http://dx.doi.org/10.1002/adfm.202421952. |
| [343] | Yang T, Xu X J, Chen S P, Yang Y, Li F K, Fan W Z, Wu Y X, Zhao J W, Liu J, Huo Y P. A lithiophilic donor-acceptor polymer modified separator for high-performance lithium metal batteries[J]. Angew. Chem. Int. Ed., 2025, 64(9): e202420973. http://dx.doi.org/10.1002/anie.202420973. |
| [344] | Zhang Y L, Lu J H, Jin Z Q, Xie X T, Wei L, Li P F, Zhao Y, Zhao J C, Xu C H, Wang W K, Zhang Z B. Covalently anchoring an ultrathin conformal siox coating on polyolefin separator for enhanced lithium metal battery performance[J]. Adv. Funct. Mater., 2024, 35(11): 202417160. http://dx.doi.org/10.1002/adfm.202417160. |
| [345] | Lu H T, Du A, Lin X P, Zhang Z Y, Liu S S, Xie Y S, Li W H, Song J W, Lu Y H, Chen W, Yang C P, Yang Q H. Rationally coupling thermal tolerance, thermal conductance, and overheating-response in a separator for safe batteries[J]. Energy Environ. Sci., 2024, 17(20): 7860-7869. http://dx.doi.org/10.1039/D4EE02302A. |
| [346] | He Q, Li Z H, Wu M W, Xie M, Bu F X, Zhang H Z, Yu R H, Mai L Q, Zhao Y. Ultra-uniform and functionalized nano-ion divider for regulating ion distribution toward dendrite-free lithium-metal batteries[J]. Adv. Mater., 2023, 35(39): e2302418. http://dx.doi.org/10.1002/adma.202302418. |
| [347] | Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, Grey C P. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nat. Commun., 2020, 11(1): 2224. http://dx.doi.org/10.1038/s41467-020-16114-x. |
| [348] | Lee S, Park K, Koo B, Park C, Jang M, Lee H, Lee H. Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes[J]. Adv. Funct. Mater., 2020, 30(35): adfm.202003132. http://dx.doi.org/10.1002/adfm.202003132. |
| [349] | Zhou Q, Dong S M, Lv Z L, Xu G J, Huang L, Wang Q L, Cui Z L, Cui G L. A temperature‐responsive electrolyte endowing superior safety characteristic of lithium metal batteries[J]. Adv. Energy Mater., 2019, 10(6): 201903441. http://dx.doi.org/10.1002/aenm.201903441. |
| [350] | Yang T, Li L, Zou J H, Yao Y Q, Zhang Q A, Jiang Z P, Li Y T. A safe ether electrolyte enabling high-rate lithium metal batteries[J]. Adv. Funct. Mater., 2024, 34(39): 202404945. http://dx.doi.org/10.1002/adfm.202404945. |
| [351] | Tan Y H, Lu G X, Zheng J H, Zhou F, Chen M, Ma T, Lu L L, Song Y H, Guan Y, Wang J, Liang Z, Xu W S, Zhang Y, Tao X, Yao H B. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries[J]. Adv. Mater., 2021, 33(42): e2102134. http://dx.doi.org/10.1002/adma.202102134. |
| [352] | Yang S J, Yao N, Jiang F N, Xie J, Sun S Y, Chen X, Yuan H, Cheng X B, Huang J Q, Zhang Q. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells[J]. Angew. Chem. Int. Ed., 2022, 61(51): e202214545. http://dx.doi.org/10.1002/anie.202214545. |
| [353] | Cheng X B, Yang S J, Liu Z, Guo J X, Jiang F N, Jiang F, Xiong X, Tang W B, Yuan H, Huang J Q, Wu Y, Zhang Q. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries[J]. Adv. Mater., 2024, 36(1): e2307370. http://dx.doi.org/10.1002/adma.202307370. |
| [354] | Zhang K, An Y L, Wei C L, Qian Y, Zhang Y Z, Feng J K. High-safety and dendrite-free lithium metal batteries enabled by building a stable interface in a nonflammable medium-concentration phosphate electrolyte[J]. ACS Appl. Mater. Interfaces, 2021, 13(43): 50869-50877. http://dx.doi.org/10.1021/acsami.1c12589. |
| [355] | Xiao L F, Zeng Z Q, Liu X W, Fang Y J, Jiang X Y, Shao Y Y, Zhuang L, Ai X P, Yang H X, Cao Y L, Liu J. Stable Li metal anode with "ion-solvent-coordinated" nonflammable electrolyte for safe Li metal batteries[J]. ACS Energy Lett., 2019, 4(2): 483-488. http://dx.doi.org/10.1021/acsenergylett.8b02527. |
| [356] | Wang Z C, Han R, Zhang H Y, Huang D, Zhang F R, Fu D S, Liu Y, Wei Y M, Song H Q, Shen Y B, Xu J J, Zheng J Y, Wu X D, Li H. An intrinsically nonflammable electrolyte for prominent-safety lithium metal batteries with high energy density and cycling stability[J]. Adv. Funct. Mater., 2023, 33(24): 202215065. http://dx.doi.org/10.1002/adfm.202215065. |
| [357] | Su C C, Shi J Y, Amine R, He M N, Son S B, Guo J C, Jiang M, Amine K. Terminally fluorinated glycol ether electrolyte for lithium metal batteries[J]. Nano Energy, 2023, 110: 108335. http://dx.doi.org/10.1016/j.nanoen.2023.108335. |
| [358] | Zhang J M, Li Q P, Zeng Y P, Tang Z, Sun D, Huang D, Peng Z G, Tang Y G, Wang H Y. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries[J]. Energy Stor. Mater., 2022, 51: 660-670. http://dx.doi.org/10.1016/j.ensm.2022.07.014. |
| [359] | Wang Z J, Wang Y Y, Li B H, Bouwer J C, Davey K, Lu J, Guo Z P. Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries[J]. Angew. Chem. Int. Ed., 2022, 61(41): e202206682. http://dx.doi.org/10.1002/anie.202206682. |
| [360] | Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation[J]. ACS Energy Lett., 2020, 5(5): 1438-1447. http://dx.doi.org/10.1021/acsenergylett.0c00643. |
| [361] | Li Y, An Y L, Tian Y, Wei C L, Xiong S L, Feng J K. High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent[J]. ACS Appl. Mater. Interfaces, 2021, 13(8): 10141-10148. http://dx.doi.org/10.1021/acsami.1c00661. |
| [362] | Meng Y F, Zhou D, Liu R L, Wang Y, Gao Y F, Wang Y, Sun B, Kang F Y, Armand M, Li B H, Wang G X, Aurbach D. Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions[J]. Nat. Energy, 2023, 8(9): 1023-1033. http://dx.doi.org/10.1038/s41560-023-01339-z. |
| [363] | Sun H H, Liu J D, He J, Wang H P, Jiang G X, Qi S H, Ma J M. Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive[J]. Sci. Bull., 2022, 67(7): 725-732. http://dx.doi.org/10.1016/j.scib.2022.01.012. |
| [364] | Qian Y X, Kang Y Y, Hu S G, Shi Q, Chen Q, Tang X W, Xiao Y L, Zhao H J, Luo G F, Xu K, Deng Y H. Mechanism study of unsaturated tripropargyl phosphate as an efficient electrolyte additive forming multifunctional interphases in lithium ion and lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(9): 10443-10451. http://dx.doi.org/10.1021/acsami.9b21605. |
| [365] | Yang Y Y C, Davies D M, Yin Y J, Borodin O, Lee J Z, Fang C C, Olguin M, Zhang Y H, Sablina E S, Wang X F, Rustomji C S, Meng Y S. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. http://dx.doi.org/10.1016/j.joule.2019.06.008. |
| [366] | Yang Y Y C, Yin Y J, Davies D M, Zhang M H, Mayer M, Zhang Y H, Sablina E S, Wang S, Lee J Z, Borodin O, Rustomji C S, Meng Y S. Liquefied gas electrolytes for wide-temperature lithium metal batteries[J]. Energy Environ. Sci., 2020, 13(7): 2209-2219. http://dx.doi.org/10.1039/d0ee01446j. |
| [367] | Louli A J, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White R T, Lee J, Rodgers T, Petibon R, Hy S, Cheng S J H, Dahn J R. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nat. Energy, 2020, 5(9): 693-702. http://dx.doi.org/10.1038/s41560-020-0668-8. |
| [368] | Niu C J, Lee H, Chen S R, Li Q Y, Du J, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nat. Energy, 2019, 4(7): 551-559. http://dx.doi.org/10.1038/s41560-019-0390-6. |
| [369] | Niu C J, Liu D Y, Lochala J A, Anderson C S, Cao X, Gross M E, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nat. Energy, 2021, 6(7): 723-732. http://dx.doi.org/10.1038/s41560-021-00852-3. |
| [370] | Liu D Y, Wu B B, Xu Y B, Ellis J, Baranovskiy A, Lu D P, Lochala J, Anderson C, Baar K, Qu D Y, Yang J H, Galvez-Aranda D, Lopez K J, Balbuena P B, Seminario J M, Liu J, Xiao J. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes[J]. Nat. Energy, 2024, 9(5): 559-569. http://dx.doi.org/10.1038/s41560-024-01488-9. |
| [371] | Li D Y, Yu D F, Zhang G W, Du A, Ye Z L, Jia Y R, Hou W Q, Xu T Z, Li F B, Chi S J, Zhu Y Z, Yang C P. High configuration entropy promises electrochemical stability of chloride electrolytes for high-energy, long-life all-solid-state batteries[J]. Angew. Chem. Int. Ed., 2025, 64(7): e202419735. http://dx.doi.org/10.1002/anie.202419735. |
| [372] | Liu Y H, Wang P H, Yang Z Y, Wang L Y, Li Z N, Liu C Z, Liu B J, Sun Z Y, Pei H W, Lv Z Y, Hu W, Lu Y F, Zhu G S. Lignin derived ultrathin all-solid polymer electrolytes with 3d single-ion nanofiber ionic bridge framework for high performance lithium batteries[J]. Adv. Mater., 2024, 36(27): e2400970. http://dx.doi.org/10.1002/adma.202400970. |
| [373] | Yu T, Liu Y K, Li H Y, Sun Y, Guo S H, Zhou H S. Ductile inorganic solid electrolytes for all-solid-state lithium batteries[J]. Chem. Rev., 2025, 125(6): 3595-3662. http://dx.doi.org/10.1021/acs.chemrev.4c00894. |
| [374] | Zhang Y Z, Chang H L, Han A G, Xu S J, Wang X Y, Yang S J, Hu X H, Sun Y J, Sun X, Chen X, Yang Y A. Synergistic Li6PS5Cl@Li3OCl composite electrolyte for high-performance all-solid-state lithium batteries[J]. Green Energy Environ., 2025, 10(4): 793-803. https://doi.org/10.1016/j.gee.2024.1007.1001. |
| [375] | Ge H L, Huang D L, Geng C N, Cui X C, Li Q, Zhang X, Yang C P, Zhou Z, Yang Q H. High-capacity, long-life all-solid-state lithium-selenium batteries enabled by lithium iodide active additive[J]. Adv. Energy Mater., 2025, 15(6): 2403449. http://dx.doi.org/10.1002/aenm.202403449. |
| [376] | Majeed M K, Hussain A, Hussain G, Majeed M U, Ashfaq M Z, Iqbal R, Saleem A. Interfacial engineering of polymer solid-state lithium battery electrolytes and Li-metal anode: Current status and future directions[J]. Small, 2024, 20(52): e2406357. http://dx.doi.org/10.1002/smll.202406357. |
| [377] | Yue N, Umer S, Subramaniam R, Teoh W Y, Yang C. Emerging metal-polymer frameworks: Structure, applications, and perspectives[J]. Adv. Funct. Mater., 2025, 34(41): e2425506. http://dx.doi.org/10.1002/adfm.202425506. |
| [378] | Yin J Y, Xu X, Jiang S, Wu H H, Wei L, Li Y D, He J P, Xi K, Gao Y F. High ionic conductivity PEO-based electrolyte with 3D framework for dendrite-free solid-state lithium metal batteries at ambient temperature[J]. Chem. Eng. J., 2022, 431: e133352. http://dx.doi.org/10.1016/j.cej.2021.133352. |
| [379] | Wang D, Xiea H, Liu Q, Mu K X, Song Z N, Xu W J, Tian L, Zhu C Z, Xu J. Low-cost, high-strength cellulose-based quasi-solid polymer electrolyte for solid-state lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2023, 62(25): e202302767. http://dx.doi.org/10.1002/anie.202302767. |
| [380] | Da X Y, Chen J, Qin Y Y, Zhao J Y, Jia X, Zhao Y J, Deng X T, Li Y N, Gao N, Su Y Q, Rong Q, Kong X P, Xiong J Q, Hu X F, Ding S J, Gao G X. Co-assisted induced self-assembled aramid nanofiber aerogel composite solid polymer electrolyte for all-solid-state lithium-metal batteries[J]. Adv. Energy Mater., 2024, 14(11): e2303527. http://dx.doi.org/10.1002/aenm.202303527. |
| [381] | Du A, Lu H T, Liu S S, Chen S Y, Chen Z H, Li W H, Song J W, Yang Q H, Yang C P. Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries[J]. Adv. Energy Mater., 2024, 14(31): e2400808. http://dx.doi.org/10.1002/aenm.202400808. |
| [382] | Pei F, Huang Y M, Wu L, Zhou S Y, Kang Q, Lin W J, Liao Y Q, Zhang Y, Huang K, Shen Y, Yuan L X, Sun S G, Li Z, Huang Y H. Multisite crosslinked poly(ether-urethane)-based polymer electrolytes for high-voltage solid-state lithium metal batteries[J]. Adv. Mater., 2024, 36(49): e2409269. http://dx.doi.org/10.1002/adma.202409269. |
| [383] | Zhang M, Wang H L, Shao A H, Wang Z Q, Tang X Y, Li S W, Liu J C, Ma Y. Enabling 4.5 V solid polymer batteries through a 10 µm, crosslinked polyether electrolyte[J]. Adv. Energy Mater., 2024, 14(14): e2303932. http://dx.doi.org/10.1002/aenm.202303932. |
| [384] | Deng X T, Chen J, Jia X, Da X Y, Zhao Y J, Gao Y Y, Gao Y, Kong X P, Ding S J, Gao G X. Highly tough slide-crosslinked gel polymer electrolyte for stable lithium metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(43): e202410818. http://dx.doi.org/10.1002/anie.202410818. |
| [385] | Zhang J, Chou J, Luo X X, Yang Y M, Yan M Y, Jia D, Zhang C H, Wang Y H, Wang W P, Tan S J, Guo J C, Zhao Y, Wang F, Xin S, Wan L J, Guo Y G. A fully amorphous, dynamic cross-linked polymer electrolyte for lithium-sulfur batteries operating at subzero-temperatures[J]. Angew. Chem. Int. Ed., 2024, 63(5): e202316087. http://dx.doi.org/10.1002/anie.202316087. |
| [386] | Qin S Y, Yu Y N, Zhang J Y, Ren Y X, Sun C, Zhang S N, Zhang L Y, Hu W, Yang H, Yang D K. Separator-free in situ dual-curing solid polymer electrolytes with enhanced interfacial contact for achieving ultrastable lithium-metal batteries[J]. Adv. Energy Mater., 2023, 13(34): e2301470. http://dx.doi.org/10.1002/aenm.202301470. |
| [387] | Jia Z H, Liu Y, Li H M, Xiong Y, Miao Y J, Liu Z X, Ren F Z. In situ polymerized peo-based solid electrolytes contribute better Li metal batteries: Challenges, strategies, and perspectives[J]. J. Energy Chem., 2024, 92: 548-571. http://dx.doi.org/10.1016/j.jechem.2024.01.017. |
| [388] | Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim B J. Design of fluorinated elastomeric electrolyte for solid-state lithium metal batteries operating at low temperature and high voltage[J]. Adv. Mater., 2024, 36(30): e2403191. http://dx.doi.org/10.1002/adma.202403191. |
| [389] | Cui M Y, Gao N, Zhao W S, Zhao H Y, Cao Z J, Qin Y Y, Gao G X, Xi K, Su Y Q, Ding S J. Self-regulating interfacial space charge through polyanion repulsion effect towards dendrite-free polymer lithium-metal batteries[J]. Adv. Energy Mater., 2024, 14(13): e2303834. http://dx.doi.org/10.1002/aenm.202303834. |
| [390] | Duan P H, Yu J L, Liu Q S, Wu G, Wang X L, Wang Y Z. Dynamic anion enables self-healing single-ion conductor polymer electrolyte for lithium-metal batteries[J]. Adv. Funct. Mater., 2024, 34(37): e2402065. http://dx.doi.org/10.1002/adfm.202402065. |
| [391] | Duan P H, Zhu G R, Yu J L, Guan Z, Gao Y, Wu G, Wang X L, Wang Y Z. Single-ion conductor gel polymer electrolytes enabling an anionic polymer-induced solid electrolyte interphase for dendrite-free lithium-metal batteries[J]. J. Mater. Chem. A, 2025, 13(13): 9111-9119. http://dx.doi.org/10.1039/d4ta06792d. |
| [392] | Shan C L, Wang Y L, Lu K, Liang M H, Li T Y, Zhang H, Hu W, Liu B J. Single ion conducting gel polymer electrolytes containing polybenzimidazole-based ionomers with abundant Li+ transport channels for dendrite-free lithium metal batteries[J]. Chem. Eng. J., 2025, 503: 158268. http://dx.doi.org/10.1016/j.cej.2024.158268. |
| [393] | Ma T T, Li Z N, Ma R Y, Feng H, Zhai Y H, Gao Z, Tian Y Y, Su Z M. Cationic porous aromatic frameworks for enhanced lithium-ion dissociation and transport in solid polymer electrolytes[J]. ACS Energy Lett., 2024, 9(8): 4009-4017. http://dx.doi.org/10.1021/acsenergylett.4c01357. |
| [394] | Ren W J, Shang X C, Lin Y, Ren H, Zhang L C, Su H, Li Q, Zhi L J, Wu M B, Li Z T. Regulating interfacial Li deposition at low-temperature through eliminating Li transfer mismatching by artificial modifying the interface in solid state battery[J]. Adv. Energy Mater., 2025, 15(17): e2405284. http://dx.doi.org/10.1002/aenm.202405284. |
| [395] | Zhang H, Deng J H, Xu H T, Xu H R, Xiao Z X, Fei F, Peng W, Xu L, Cheng Y, Liu Q, Hu G H, Mai L Q. Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries[J]. Adv. Mater., 2024, 36(31): e2403848. http://dx.doi.org/10.1002/adma.202403848. |
| [396] | Zou S H, Yang Y, Wang J R, Zhou X Y, Wan X H, Zhu M, Liu J. Polymerization of solid-state polymer electrolytes for lithium metal batteries: A review[J]. Energy Environ. Sci., 2024, 17(13): 4426-4460. http://dx.doi.org/10.1039/d4ee00822g. |
| [397] | Xu P, Gao Y C, Huang Y X, Shuang Z Y, Kong W J, Huang X Y, Huang W Z, Yao N, Chen X, Yuan H, Zhao C Z, Huang J Q, Zhang Q. Solvation regulation reinforces anion-derived inorganic-rich interphase for high-performance quasi-solid-state Li metal batteries[J]. Adv. Mater., 2024, 36(44): e2409489. http://dx.doi.org/10.1002/adma.202409489. |
| [398] | Zhu Y F, Lao Z J, Zhang M T, Hou T Z, Xiao X, Piao Z H, Lu G X, Han Z Y, Gao R H, Nie L, Wu X R, Song Y Z, Ji C Y, Wang J, Zhou G M. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries[J]. Nat. Commun., 2024, 15(1): 3914. http://dx.doi.org/10.1038/s41467-024-48078-7. |
| [399] | Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L, Guo Y G. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Sci. Adv., 2018, 4(10): eaat5383. http://dx.doi.org/10.1126/sciadv.aat5383. |
| [400] | Wang W P, Zhang J, Yin Y X, Duan H, Chou J, Li S Y, Yan M, Xin S, Guo Y G. A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Adv. Mater., 2020, 32(23): e2000302. http://dx.doi.org/10.1002/adma.202000302. |
| [401] | Croce F, Appetecchi G B, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. http://dx.doi.org/10.1038/28818. |
| [402] | Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proc. Natl. Acad. Sci., 2017, 114(42): 11069-11074. http://dx.doi.org/10.1073/pnas.1708489114. |
| [403] | Xu Y A, Wang K, Zhang X D, Ma Y B, Peng Q F, Gong Y, Yi S, Guo H, Zhang X, Sun X Z, Gao H C, Xin S, Guo Y G, Ma Y W. Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding[J]. Adv. Energy Mater., 2023, 13(14): 2204377. http://dx.doi.org/10.1002/aenm.202204377. |
| [404] | Ma Q, Zeng X X, Yue J P, Yin Y X, Zuo T T, Liang J Y, Deng Q, Wu X W, Guo Y G. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Adv. Energy Mater., 2019, 9(13): 1803854. http://dx.doi.org/10.1002/aenm.201803854. |
| [405] | Liang J Y, Zeng X X, Zhang X D, Zuo T T, Yan M, Yin Y X, Shi J L, Wu X W, Guo Y G, Wan L J. Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries[J]. J. Am. Chem. Soc., 2019, 141(23): 9165-9169. http://dx.doi.org/10.1021/jacs.9b03517. |
| [406] | Duan H, Yin Y X, Shi Y, Wang P F, Zhang X D, Yang C P, Shi J L, Wen R, Guo Y G, Wan L J. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. J. Am. Chem. Soc., 2018, 140(1): 82-85. http://dx.doi.org/10.1021/jacs.7b10864. |
| [407] | Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Adv. Mater., 2019, 31(12): e1807789. http://dx.doi.org/10.1002/adma.201807789. |
| [408] | Zhang X Y, Cheng S C, Fu C K, Yin G P, Wang L G, Wu Y M, Huo H. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Nano-Micro Lett., 2024, 17(1): 2. http://dx.doi.org/10.1007/s40820-024-01498-y. |
| [409] | Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G X. Polymer electrolytes for lithium-based batteries: Advances and prospects[J]. Chem, 2019, 5(9): 2326-2352. http://dx.doi.org/10.1016/j.chempr.2019.05.009. |
| [410] | Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries[J]. J. Electrochem. Soc., 2012, 159(3): A222. http://dx.doi.org/10.1149/2.030203jes. |
| [411] | Zhu J, Bian P, Sun G L, Zhang J P, Lou G L, Song X C, Zhao R Q, Liu J, Xu N, Li A H, Wan X J, Ma Y F, Li C X, Zhang H T, Chen Y S. Practical high-voltage lithium metal batteries enabled by the in-situ fabrication of main-chain fluorinated polymer electrolytes[J]. Angew. Chem. Int. Ed., 2025, 64(16): e202424685. http://dx.doi.org/https://doi.org/10.1002/anie.202424685. |
| [412] | Zhang W R, Koverga V, Liu S F, Zhou J G, Wang J, Bai P X, Tan S, Dandu N K, Wang Z Y, Chen F, Xia J L, Wan H L, Zhang X Y, Yang H C, Lucht B L, Li A M, Yang X Q, Hu E Y, Raghavan S R, Ngo A T, Wang C S. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nat. Energy, 2024, 9(4): 386-400. http://dx.doi.org/10.1038/s41560-023-01443-0. |
| [413] | Ye G, Zhu L J, Ma Y, He M X, Zheng C X, Shen K, Hong X F, Xiao Z T, Jia Y F, Gao P, Pang Q Q. Molecular design of solid polymer electrolytes with enthalpy-entropy manipulation for Li metal batteries with aggressive cathode chemistry[J]. J. Am. Chem. Soc., 2024, 146(40): 27668-27678. http://dx.doi.org/10.1021/jacs.4c09062. |
| [414] | Wu L N, Peng J, Han F M, Sun Y K, Sheng T, Li Y Y, Zhou Y, Huang L, Li J T, Sun S G. Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition[J]. J. Mater. Chem. A, 2020, 8(8): 4300-4307. http://dx.doi.org/10.1039/C9TA13644D. |
| [415] | Jing S H, Lu Y, Huang Y T, Liu H Z, Shen Y X, Kuang W Q, Shen H Q, Liu S L, Zhang Z L, Liu F Y. High-performance sheet-type sulfide all-solid-state batteries enabled by dual-function Li4.4Si alloy-modified nano silicon anodes[J]. Adv. Mater., 2024, 36(40): 2312305. http://dx.doi.org/10.1002/adma.202312305. |
| [416] | Pan X Y, Sun H, Wang Z X, Huang H, Chang Q, Li J P, Gao J, Wang S F, Xu H H, Li Y T, Zhou W D. High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/NMC622 batteries[J]. Adv. Energy Mater., 2020, 10(42): 2002416. http://dx.doi.org/10.1002/aenm.202002416. |
| [417] | Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y L, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nat. Chem., 2020, 19(4): 428-435. http://dx.doi.org/10.1038/s41563-019-0576-0. |
| [418] | Alsac E P, Nelson D L, Yoon S G, Cavallaro K A, Wang C, Sandoval S E, Eze U D, Jeong W J, McDowell M T. Characterizing electrode materials and interfaces in solid-state batteries[J]. Chem. Rev., 2025, 125(4): 2009-2119. http://dx.doi.org/10.1021/acs.chemrev.4c00584. |
| [419] | Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv. Mater., 2021, 33(6): e2000751. http://dx.doi.org/10.1002/adma.202000751. |
| [420] | Wang J C, Chen L Q, Li H, Wu F. Anode interfacial issues in solid-state Li batteries: Mechanistic understanding and mitigating strategies[J]. Energy Environ. Mater., 2023, 6(4): e12613. http://dx.doi.org/10.1002/eem2.12613. |
| [421] | Banerjee A, Wang X, Fang C, Wu E A, Meng Y S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J]. Chem. Rev., 2020, 120(14): 6878-6933. http://dx.doi.org/10.1021/acs.chemrev.0c00101. |
| [422] | Ma J, Zhang S, Zheng Y, Huang T P, Sun F, Dong S M, Cui G L. Interelectrode talk in solid-state lithium-metal batteries[J]. Adv. Mater., 2023, 35(38): e2301892. http://dx.doi.org/10.1002/adma.202301892. |
| [423] | Wan H L, Wang Z Y, Liu S F, Zhang B, He X Z, Zhang W R, Wang C S. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nat. Energy, 2023, 8(5): 473-481. http://dx.doi.org/10.1038/s41560-023-01231-w. |
| [424] | Janek J, Zeier W G. Challenges in speeding up solid-state battery development[J]. Nat. Energy, 2023, 8(3): 230-240. http://dx.doi.org/10.1038/s41560-023-01208-9. |
| [425] | Ning Z Y, Li G C, Melvin D L R, Chen Y, Bu J F, Spencer-Jolly D, Liu J L, Hu B K, Gao X W, Perera J, Gong C, Pu S D, Zhang S, Liu B Y, Hartley G O, Bodey A J, Todd R I, Grant P S, Armstrong D E J, Marrow T J, Monroe C W, Bruce P G. Dendrite initiation and propagation in lithium metal solid-state batteries[J]. Nature, 2023, 618(7964): 287-293. http://dx.doi.org/10.1038/s41586-023-05970-4. |
| [426] | Wang C H, Deng T, Fan X L, Zheng M, Yu R Z, Lu Q W, Duan H, Huang H, Wang C S, Sun X L. Identifying soft breakdown in all-solid-state lithium battery[J]. Joule, 2022, 6(8): 1770-1781. http://dx.doi.org/10.1016/j.joule.2022.05.020. |
| [427] | Chen H, Zhao Y M, Zhang X Y, Li R, Wang A X, Zhang H M, Liu J X, Wen B H, Zhang L, Hua Q S, Liu T C, Wu K, Amine K, Luo J Y. Synthesis of monocrystalline lithium for high-critical-current-density solid-state batteries[J]. Nat. Synthesis, 2025, 4: 552-561. https://doi.org/10.1038/s44160-44024-00712-44164. |
| [428] | Ren F C, Liang Z T, Zhao W A, Zuo W H, Lin M, Wu Y Q, Yang X R, Gong Z L, Yang Y. The nature and suppression strategies of interfacial reactions in all-solid-state batteries[J]. Energy Environ. Sci., 2023, 16(6): 2579-2590. http://dx.doi.org/10.1039/d3ee00870c. |
| [429] | Liang Z T, Xiang Y X, Wang K J, Zhu J P, Jin Y T, Wang H C, Zheng B Z, Chen Z R, Tao M M, Liu X S, Wu Y Q, Fu R Q, Wang C S, Winter M, Yang Y. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nat. Commun., 2023, 14(1): 259. http://dx.doi.org/10.1038/s41467-023-35920-7. |
| [430] | Alt C D, Müller N U C B, Riegger L M, Aktekin B, Minnmann P, Peppler K, Janek J. Quantifying multiphase SEI growth in sulfide solid electrolytes[J]. Joule, 2024, 8(10): 2755-2776. http://dx.doi.org/10.1016/j.joule.2024.07.006. |
| [431] | Yadav N G, Folastre N, Bolmont M, Jamali A, Morcrette M, Davoisne C. Study of failure modes in two sulphide-based solid electrolyte all-solid-state batteries via in situ sem[J]. J. Mater. Chem. A, 2022, 10(33): 17142-17155. http://dx.doi.org/10.1039/D2TA01889F. |
| [432] | Zhang X S, Wan J, Shen Z Z, Lang S Y, Xin S, Wen R, Guo Y G, Wan L J. In situ analysis of interfacial morphological and chemical evolution in all-solid-state lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(38): e202409435. http://dx.doi.org/10.1002/anie.202409435. |
| [433] | Ye L, Wang D W, Lu Q, Jhang L J, Kou R, Pandey A K, Lira J, Liao M, Wang D H. All-solid-state lithium-sulfur batteries of high cycling stability and rate capability enabled by a self-lithiated Sn-C interlayer[J]. Adv. Mater., 2025, 37(23): 2407724. http://dx.doi.org/10.1002/adma.202407724. |
| [434] | Xu Y N, Wang K, Zhang X D, Ma Y B, Peng Q F, Gong Y, Yi S, Guo H, Zhang X, Sun X Z, Gao H C, Xin S, Guo Y G, Ma Y W. Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding[J]. Adv. Energy Mater., 2023, 13(14): 2204377. http://dx.doi.org/10.1002/aenm.202204377. |
| [435] | Su H, Li J R, Zhong Y, Liu Y, Gao X H, Kuang J N, Wang M K, Lin C X, Wang X L, Tu J P. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nat. Commun., 2024, 15(1): 4202. http://dx.doi.org/10.1038/s41467-024-48585-7. |
| [436] | Gao Q F, Wu D X, Zhu X, Lu P S, Ma T H, Yang M, Chen L Q, Li H, Wu F. Dendrite-free lithium-metal all-solid-state batteries by solid-phase passivation[J]. Nano Energy, 2023, 117: 108922. http://dx.doi.org/10.1016/j.nanoen.2023.108922. |
| [437] | Zhang W R, Wang Z Y, Wan H L, Li A M, Liu Y J, Liou S C, Zhang K, Ren Y X, Jayawardana C, Lucht B L, Wang C S. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction[J]. Nat. Mater., 2025, 24(3): 414-423. http://dx.doi.org/10.1038/s41563-024-02064-y. |
| [438] | Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-222. http://dx.doi.org/10.1038/s41586-021-03486-3. |
| [439] | Xu S J, Cheng X B, Yang S J, Yin Y C, Wang X Y, Zhang Y Z, Ren D H, Sun Y J, Sun X, Yao H B, Yang Y A. Performance enhancement of the Li6PS5Cl-based solid-state batteries by scavenging lithium dendrites with LaCl3-based electrolyte[J]. Adv. Mater., 2024, 36(15): e2310356. http://dx.doi.org/10.1002/adma.202310356. |
| [440] | Ye L, Wang D W, Lu Q, Jhang L J, Kou R, Pandey A K, Lira J, Liao M, Wang D H. All-solid-state lithium-sulfur batteries of high cycling stability and rate capability enabled by a self-lithiated sn-c interlayer[J]. Adv. Mater., 2025, 37(23): e2407724. http://dx.doi.org/10.1002/adma.202407724. |
| [441] | Wan H, Wang Z, Zhang W, He X, Wang C. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739-744. http://dx.doi.org/10.1038/s41586-023-06653-w. |
| [442] | Liu C, Chen B T, Zhang T R, Zhang J C, Wang R Y, Zheng J, Mao Q J, Liu X F. Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries[J]. Angew. Chem. Int. Ed., 2023, 62(22): e202302655. http://dx.doi.org/10.1002/anie.202302655. |
| [443] | Ye L H, Lu Y, Wang Y C, Li J Y, Li X. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials[J]. Nat. Mater., 2024, 23(2): 244-251. http://dx.doi.org/10.1038/s41563-023-01722-x. |
| [444] | Wang Z Y, Xia J L, Ji X, Liu Y J, Zhang J X, He X Z, Zhang W R, Wan H L, Wang C S. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nat. Energy, 2024, 9(3): 251-262. http://dx.doi.org/10.1038/s41560-023-01426-1. |
| [445] | Xu Y, Fang Z Q, Yue J Y, Wang L M, Wang Z F, Zhang S M, Liu M Z, Ye Z M J, Liu R, Yan X L, Han X, Wang Y Y, Zhao C T, Xiao B W, Wang X B, Xiao W, Li X N, Mei T, Liang J W. Cross-linked polyamide-integrated argyrodite Li6PS5Cl for all-solid-state lithium metal batteries[J]. Small, 2025, 21(3): e2408824. http://dx.doi.org/10.1002/smll.202408824. |
| [446] | Peng J, Wu D X, Song F M, Wang S, Niu Q H, Xu J R, Lu P S, Li H, Chen L Q, Wu F. High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode[J]. Adv. Funct. Mater., 2022, 32(2): 2105776. http://dx.doi.org/10.1002/adfm.202105776. |
| [447] | Duan H, Wang C H, Yu R Z, Li W H, Fu J M, Yang X F, Lin X T, Zheng M T, Li X A, Deng S X, Hao X G, Li R Y, Wang J T, Huang H, Sun X L. In situ constructed 3d lithium anodes for long-cycling all-solid-state batteries[J]. Adv. Energy Mater., 2023, 13(24): 2300815. http://dx.doi.org/10.1002/aenm.202300815. |
| [448] | Chen Y, Li W W, Sun C Z, Jin J, Wang Q, Chen X D, Zha W P, Wen Z Y. Sustained release‐driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide‐based solid‐state batteries[J]. Adv. Energy Mater., 2020, 11(4): 2002545. http://dx.doi.org/10.1002/aenm.202002545. |
| [449] | Tang W, Xia W, Hussain F, Zhu J L, Han S B, Yin W, Yu P C, Lei J W, Butenko D S, Wang L P, Zhao Y S. A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries[J]. J. Power Sources, 2023, 568: 232992. http://dx.doi.org/10.1016/j.jpowsour.2023.232992 |
| [450] | Umeshbabu E, Maddukuri S, Hu Y, Fichtner M, Munnangi A R. Influence of chloride ion substitution on lithium-ion conductivity and electrochemical stability in a dual-halogen solid-state electrolyte[J]. ACS Appl. Mater. Interfaces, 2022, 14(22): 25448-25456. http://dx.doi.org/10.1021/acsami.2c04160. |
| [451] | Zhang S M, Zhao F P, Wang S, Liang J W, Wang J, Wang C H, Zhang H, Adair K, Li W H, Li M S, Duan H, Zhao Y, Yu R Z, Li R Y, Huang H, Zhang L, Zhao S Q, Lu S G, Sham T K, Mo Y F, Sun X L. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J]. Adv. Energy Mater., 2021, 11(32): 2100836. http://dx.doi.org/10.1002/aenm.202100836. |
| [452] | Ji X, Hou S, Wang P F, He X Z, Piao N, Chen J, Fan X L, Wang C S. Solid-state electrolyte design for lithium dendrite suppression[J]. Adv. Mater., 2020, 32(46): e2002741. http://dx.doi.org/10.1002/adma.202002741. |
| [453] | Xu R C, Han F D, Ji X, Fan X L, Tu J P, Wang C S. Interface engineering of sulfide electrolytes for all-solid-state lithium batteries[J]. Nano Energy, 2018, 53: 958-966. http://dx.doi.org/10.1016/j.nanoen.2018.09.061. |
| [454] | Kang J, Han B. First-principles characterization of the unknown crystal structure and ionic conductivity of Li7P2S8I as a solid electrolyte for high-voltage Li ion batteries[J]. J. Phys. Chem. Lett., 2016, 7(14): 2671-2675. http://dx.doi.org/10.1021/acs.jpclett.6b01050. |
| [455] | Nam K, Chun H, Hwang J, Han B. First-principles design of highly functional sulfide electrolyte of lisnpscl for all solid-state Li-ion battery applications[J]. ACS Sustainable Chem. Eng., 2020, 8(8): 3321-3327. http://dx.doi.org/10.1021/acssuschemeng.9b07166. |
| [456] | Duan C, Cheng Z, Li W, Li F, Liu H, Yang J G, Hou G J, He P, Zhou H S. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition[J]. Energy Environ. Sci., 2022, 15(8): 3236-3245. http://dx.doi.org/10.1039/d2ee01358d. |
| [457] | Gao Q F, Wu D X, Wang Z X, Lu P S, Zhu X, Ma T H, Yang M, Chen L Q, Li H, Wu F. Superior lithium-metal all-solid-state batteries with in situ formed Li3N-LiF-rich interphase[J]. Energy Stor. Mater., 2023, 63: 103007. http://dx.doi.org/10.1016/j.ensm.2023.103007. |
| [458] | Shi Y R, Hu L B, Li Q H, Sun Y, Duan Q M, Jiang Y, Xu Y, Yi J, Zhao B, Zhang J J. An optimizing hybrid interface architecture for unleashing the potential of sulfide-based all-solid-state battery[J]. Energy Stor. Mater., 2023, 63: 103009. http://dx.doi.org/10.1016/j.ensm.2023.103009. |
| [459] | Zhao R, Kmiec S, Hu G, Martin S W. Lithium thiosilicophosphate glassy solid electrolytes synthesized by high-energy ball-milling and melt-quenching: Improved suppression of lithium dendrite growth by si doping[J]. ACS Appl. Mater. Interfaces, 2020, 12(2): 2327-2337. http://dx.doi.org/10.1021/acsami.9b16792. |
| [460] | Jia W S, Zhang J F, Zheng L J, Zhou H, Zou W, Wang L P. Lithium-rich alloy as stable lithium metal composite anode for lithium batteries[J]. eScience, 2024, 4(6): 100266. http://dx.doi.org/10.1016/j.esci.2024.100266. |
| [461] | Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): eabn4372. http://dx.doi.org/10.1126/sciadv.abn4372. |
| [462] | Wang Z X, Lu Y, Zhao C Z, Huang W Z, Huang X Y, Kong W J, Li L X, Wang Z Y, Yuan H, Huang J Q, Zhang Q. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794-2810. http://dx.doi.org/10.1016/j.joule.2024.07.007. |
| [463] | Tan D H S, Chen Y T, Yang H, Bao W, Sreenarayanan B, Doux J M, Li W, Lu B, Ham S Y, Sayahpour B, Scharf J, Wu E A, Deysher G, Han H E, Hah H J, Jeong H, Lee J B, Chen Z, Meng Y S. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. http://dx.doi.org/10.1126/science.abg7217. |
| [464] | Dong C, Shi H D, Cui H T, Yu S W, Li Y J, Ma Y X, Guo Y N, Dong Y F, Zhang L Q, Li C Z, Yu Y, Wu Z S. Large-area dendrite-free ultrathin Li-rich 3D Li-Sn alloy/graphene foil for high-performance all-solid-state lithium-sulfur batteries[J]. Energy Stor. Mater., 2025, 75: 103987. http://dx.doi.org/10.1016/j.ensm.2024.103987. |
| [465] | Wei C C, Liu C, Xiao Y J, Wu Z K, Luo Q Y, Jiang Z L, Wang Z Y, Zhang L, Cheng S J, Yu C. SnF2-induced multifunctional interface-stabilized Li5.5PS4.5Cl1.5-based all-solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2024, 34(18): 2314306. http://dx.doi.org/10.1002/adfm.202314306. |
| [466] | Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ. Sci., 2020, 13(5): 1429-1461. http://dx.doi.org/10.1039/c9ee03828k. |
| [467] | Wang C H, Liang J W, Kim J T, Sun X L. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci. Adv., 2022, 8(36): eadc9516. http://dx.doi.org/10.1126/sciadv.adc9516. |
| [468] | Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew. Chem. Int. Ed., 2019, 58(24): 8039-8043. http://dx.doi.org/10.1002/anie.201901938. |
| [469] | Riegger L M, Schlem R, Sann J, Zeier W G, Janek J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew. Chem. Int. Ed., 2021, 60(12): 6718-6723. http://dx.doi.org/10.1002/anie.202015238. |
| [470] | Fu Y Y, Ma C. Interplay between Li3YX6 (X = Cl or Br) solid electrolytes and the Li metal anode[J]. Sci. China Mater., 2021, 64(6): 1378-1385. http://dx.doi.org/10.1007/s40843-020-1580-3. |
| [471] | Chen K, Hao X X, Jiang M, Tang Y P. Water-mediated synthesis of cost-effective Fe3+ substituted LaCl3-based halide solid-state electrolyte[J]. J. Alloys Compd., 2024, 997: 174945. http://dx.doi.org/10.2139/ssrn.4781614. |
| [472] | Zhang G W, Li D Y, Yu D F, Du A, Chen Z H, Ge H L, Hou W Q, Zhu Y Z, Yang C P. Stabilizing halide electrolytes against lithium metal with a self-limiting layer for all-solid-state lithium metal batteries[J]. ACS Nano, 2025, 19(15): 14839-14847. http://dx.doi.org/10.1021/acsnano.4c18584. |
| [473] | Luo J, Sun Q, Liang J W, Adair K, Zhao F P, Deng S X, Zhao Y, Li R Y, Huang H, Yang R, Zhao S Q, Wang J T, Sun X L. Rapidly in situ cross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries[J]. ACS Energy Lett., 2023, 8(9): 3676-3684. http://dx.doi.org/10.1021/acsenergylett.3c01157. |
| [474] | Deng Z, Jin Z, Chen D C, Ni D X, Tian M Y, Zhan Y J, Li S, Sun Y, Huang X J, Zhao Y S. Bilayer halide electrolytes for all-inorganic solid-state lithium-metal batteries with excellent interfacial compatibility[J]. ACS Appl. Mater. Interfaces, 2022, 14(43): 48619-48626. http://dx.doi.org/10.1021/acsami.2c12444. |
| [475] | Xu X W, Du G F, Cui C, Liang J N, Zeng C, Wang S H, Ma Y, Li H Q. Stabilizing the halide solid electrolyte to lithium by a beta-Li3N interfacial layer[J]. ACS Appl. Mater. Interfaces, 2022, 14(35): 39951-39958. http://dx.doi.org/10.1021/acsami.2c09131. |
| [476] | Li W H, Li M S, Wang S, Chien P H, Luo J, Fu J M, Lin X T, King G, Feng R F, Wang J, Zhou J G, Li R Y, Liu J, Mo Y F, Sham T K, Sun X L. Superionic conducting vacancy-rich beta-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nat. Nanotechnol., 2025, 20(2): 265-275. http://dx.doi.org/10.1038/s41565-024-01813-z. |
| [477] | Yu T W, Liang J W, Luo L, Wang L M, Zhao F P, Xu G F, Bai X T, Yang R, Zhao S Q, Wang J T, Yu J Q, Sun X L. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Adv. Energy Mater., 2021, 11(36): 2101915. http://dx.doi.org/10.1002/aenm.202101915. |
| [478] | Chen X, Jia Z Q, Lv H M, Wang C G, Zhao N, Guo X X. Improved stability against moisture and lithium metal by doping f into LiInCl[J]. J. Power Sources, 2022, 545(15): 231939. http://dx.doi.org/10.1016/j.jpowsour.2022.231939. |
| [479] | Luo X M, He X N, Su H, Zhong Y, Wang X L, Tu J P. Effective regulation towards electrochemical stability of superionic solid electrolyte via facile dual-halogen strategy[J]. Chem. Eng. J., 2023, 465(1): 143036. http://dx.doi.org/10.1016/j.cej.2023.143036. |
| [480] | Yin Y C, Yang J T, Luo J D, Lu G X, Huang Z, Wang J P, Li P, Li F, Wu Y C, Tian T, Meng Y F, Mo H S, Song Y H, Yang J N, Feng L Z, Ma T, Wen W, Gong K, Wang L J, Ju H X, Xiao Y, Li Z, Tao X, Yao H B. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77-83. http://dx.doi.org/10.1038/s41586-023-05899-8. |
| [481] | Li Y H, Xu H, Ning Q R, Li S T, Wang J, Wang J X, Hu Z T, Tian J S, Li X N, Han Y, Zhu Y H. Visualizing structure, growth, and dynamics of Li dendrite in batteries: From atomic to device scales[J]. Adv. Funct. Mater., 2024, 34(36): 2401361. http://dx.doi.org/10.1002/adfm.202401361. |
| [482] | Xu Y L, Dong K, Jie Y L, Adelhelm P, Chen Y W, Xu L, Yu P P, Kim J, Kochovski Z, Yu Z L, Li W X, LeBeau J, Shao-Horn Y, Cao R G, Jiao S H, Cheng T, Manke I, Lu Y. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives[J]. Adv. Energy Mater., 2022, 12(19): 2200398. http://dx.doi.org/10.1002/aenm.202200398. |
| [483] | Park J, Watanabe T, Yamamoto K, Uchiyama T, Takami T, Sakuda A, Hayashi A, Tatsumisago M, Uchimoto Y. Unique Li deposition behavior in Li3PS4 solid electrolyte observed via operando X-ray computed tomography[J]. Chem. Commun., 2023, 59(50): 7799-7802. http://dx.doi.org/10.1039/d2cc05224e. |
| [484] | Maity A, Svirinovsky-Arbeli A, Buganim Y, Oppenheim C, Leskes M. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-nmr spectroscopy[J]. Nat. Commun., 2024, 15(1): 9956. http://dx.doi.org/10.1038/s41467-024-54315-w. |
| [485] | Wang J Y, Huang W, Pei A, Li Y Z, Shi F F, Yu X Y, Cui Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nat. Energy, 2019, 4(8): 664-670. http://dx.doi.org/10.1038/s41560-019-0413-3. |
| [486] | Lin R, He Y, Wang C, Zou P, Hu E, Yang X Q, Xu K, Xin H L. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nat. Nanotechnol., 2022, 17(7): 768-776. http://dx.doi.org/10.1038/s41565-022-01148-7. |
| [487] | Lang S, Colletta M, Krumov M R, Seok J, Kourkoutis L F, Wen R, Abruna H D. Multidimensional visualization of the dynamic evolution of Li metal via in situ/operando methods[J]. Proc. Natl. Acad. Sci., 2023, 120(7): e2220419120. http://dx.doi.org/10.1073/pnas.2220419120. |
| [488] | Dachraoui W, Kühnel R S, Battaglia C, Erni R. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy[J]. Nano Energy, 2024, 130: 110086. http://dx.doi.org/10.1016/j.nanoen.2024.110086. |
| [489] | Yu S H, Huang X, Brock J D, Abruna H D. Regulating key variables and visualizing lithium dendrite growth: An operando X-ray study[J]. J. Am. Chem. Soc., 2019, 141(21): 8441-8449. http://dx.doi.org/10.1021/jacs.8b13297. |
| [490] | Shen Z Z, Zhang X S, Wan J, Liu G X, Tian J X, Liu B, Guo Y G, Wen R. Nanoscale visualization of lithium plating/stripping tuned by on-site formed solid electrolyte interphase in all-solid-state lithium-metal batteries[J]. Angew. Chem. Int. Ed., 2024, 63(13): e202316837. http://dx.doi.org/10.1002/anie.202316837. |
| [491] | Narayanan S, Ulissi U, Gibson J S, Chart Y A, Weatherup R S, Pasta M. Effect of current density on the solid electrolyte interphase formation at the lithium|Li₆PS₅Cl interface interface[J]. Nat. Commun., 2022, 13(1): 7237. http://dx.doi.org/10.1038/s41467-022-34855-9. |
| [492] | Asakura T, Inaoka T, Hotehama C, Kowada H, Motohashi K, Sakuda A, Tatsumisago M, Hayashi A. Stack pressure dependence of Li stripping/plating performance in all-solid-state Li metal cells containing sulfide glass electrolytes[J]. ACS Appl. Mater. Interfaces, 2023, 15(26): 31403-31408. http://dx.doi.org/10.1021/acsami.3c03552. |
| [493] | Lin X, Shen Y, Yu Y, Huang Y H. In situ NMR verification for stacking pressure-induced lithium deposition and dead lithium in anode-free lithium metal batteries[J]. Adv. Energy Mater., 2024, 14(14): 2303918. http://dx.doi.org/10.1002/aenm.202303918. |
| [494] | Zhu C, Fuchs T, Weber S A L, Richter F H, Glasser G, Weber F, Butt H J, Janek J, Berger R. Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques[J]. Nat. Commun., 2023, 14(1): 1300. http://dx.doi.org/10.1038/s41467-023-36792-7. |
| [495] | Cao T C, Xu R, Cheng X P, Wang M M, Sun T, Lu J X, Liu X Q, Zhang Y F, Zhang Z. Chemomechanical origins of the dynamic evolution of isolated Li filaments in inorganic solid-state electrolytes[J]. Nano Lett., 2024, 24(6): 1843-1850. http://dx.doi.org/10.1021/acs.nanolett.3c03321. |
| [496] | Liu H Y, Chen Y D, Chien P H, Amouzandeh G, Hou D, Truong E, Oyekunle I P, Bhagu J, Holder S W, Xiong H, Gor'kov P L, Rosenberg J T, Grant S C, Hu Y Y. Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction[J]. Nat. Mater., 2025, 24(4): 581-588. http://dx.doi.org/10.1038/s41563-024-02094-6. |
| [497] | Ning Z Y, Jolly D S, Li G, De Meyere R, Pu S D, Chen Y, Kasemchainan J, Ihli J, Gong C, Liu B Y, Melvin D L R, Bonnin A, Magdysyuk O, Adamson P, Hartley G O, Monroe C W, Marrow T J, Bruce P G. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nat. Mater., 2021, 20(8): 1121-1129. http://dx.doi.org/10.1038/s41563-021-00967-8. |
| [1] | 王鹏程, 李定昌, 李君涛, 卢光波, 王铈汶. 吡啶添加剂改善磷酸铁锂储能电池循环性能研究[J]. 电化学(中英文), 2025, 31(12): 2506131-. |
| [2] | 邓以诚, 游梓畅, 林耿忠, 唐果, 吴敬华, 周志民, 庄想春, 杨立萱, 张振杰, 温兆银, 姚霞银, 王长虹, 周倩, 崔光磊, 何平, 李惠, 艾新平. 对十大科学问题之三“如何获得满足固态电池应用需求的高性能碱金属离子固体电解质?”的深度思考——获得满足固态电池应用需求的高性能锂离子固体电解质策略[J]. 电化学(中英文), 2025, 31(10): 2516002-. |
| [3] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
| [4] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
| [5] | 李虎东, 贾维尚, 闫新秀, 阳耀月. 定量的复合金属锂作为三维泡沫锂电极用于锂电池的研究[J]. 电化学(中英文), 2022, 28(8): 2202051-. |
| [6] | 张滟滟, 刘越, 陆一鸣, 于沛平, 杜文轩, 麻冰云, 谢淼, 杨昊, 程涛. 多尺度模拟研究溶质调控下电解液在锂金属电极上的分解机理[J]. 电化学(中英文), 2022, 28(4): 2105181-. |
| [7] | 程浩然, 马征, 郭营军, 孙春胜, 李茜, 明军. 影响电池性能的因素:金属离子溶剂化结构衍生的界面行为还是固体电解质界面膜?[J]. 电化学(中英文), 2022, 28(11): 2219012-. |
| [8] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
| [9] | 张彪, 帅毅, 王玉, 杨纳川, 陈康华. 碳酸酯类电解液中Mg(NO3)2添加剂抑制锂枝晶生长的研究[J]. 电化学(中英文), 2021, 27(4): 423-428. |
| [10] | 张运丰, 王佳颖, 李晓洁, 赵诗宇, 何阳, 霍士康, 王雅莹, 谭畅. 锂金属电池用三维半互穿网络聚合物电解质的制备[J]. 电化学(中英文), 2021, 27(4): 413-422. |
| [11] | 陈规伟, 龚正良. 石榴石固体电解质Li3BO3界面改性研究[J]. 电化学(中英文), 2021, 27(1): 76-82. |
| [12] | 魏壮壮, 张楠祥, 吴锋, 陈人杰. 锂硫电池多功能涂层隔膜的研究进展与展望[J]. 电化学(中英文), 2020, 26(5): 716-730. |
| [13] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
| [14] | 郭文君,李紫琼,柯若昊,钮东方,徐衡,张新胜. 脉冲电沉积抑制锂枝晶生成的研究[J]. 电化学(中英文), 2018, 24(3): 246-252. |
| [15] | 李丽,许晶晶,韩少杰,吴晓东,卢威,陈立桅. 高电压镍锰酸锂正极/电解液界面本征性质的研究[J]. 电化学(中英文), 2016, 22(6): 582-589. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||