欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (11): 2516001.  doi: 10.61558/2993-074X.3594

所属专题: SSE

• 综述 • 上一篇    

对电化学十大科学问题之二“如何理解和调控金属Li负极成核/生长及枝晶抑制策略?”的回应——调控锂金属成核与生长以抑制枝晶:从液态电解质电池到固态电池

杜澳a,#, 张娟b,#, 徐攀c,#, 李亚捷d,#, 易康宇e,#, 沈珍珍b,#, 葛慧琳a, 章广文a, 张超辉b, 王昱昊b, 赵辰孜c,g, 徐萌扬d, 揭育林e, 文锐b,f,*(), 焦淑红e,*(), 施思齐d,i,*(), 张强c,g,h,*(), 杨春鹏a,*(), 郭玉国b,f,*()   

  1. a 天津大学化工学院天津市先进碳材料与电化学储能重点实验室中国 天津 300350
    b 中国科学院化学研究所中国科学院分子纳米结构与纳米技术重点实验室,北京分子科学国家研究中心中国北京 100190
    c 清华大学化学工程系复合固态电池北京市重点实验室&清华大学化工系绿电化工研究中心中国 北京 100084
    d 上海大学核电关键材料全国重点实验室&材料科学与工程学院上海 200444, 中国
    e 中国科学技术大学精准智能化学全国重点实验室合肥 230026, 中国
    f 中国科学院大学化学科学学院北京 100049, 中国
    g 智能固态电池创新中心四川 宜宾 644002, 中国
    h 清华大学碳中和研究院北京 100084, 中国
    i 上海大学材料基因组工程研究院上海 200444, 中国
    j 北京化工大学化工资源有效利用国家重点实验室 & 北京市材料电化学过程与技术重点实验室中国北京 100029
  • 收稿日期:2025-07-06 修回日期:2025-10-09 接受日期:2025-11-12 发布日期:2025-11-12 出版日期:2025-11-12
  • 通讯作者: 文锐,焦淑红,施思齐,张强,杨春鹏,郭玉国 E-mail:ruiwen@iccas.ac.cn;jiaosh@ustc.edu.cn;sqshi@shu.edu.cn;zhang-qiang@mails.tsinghua.edu.cn;cpyang@tju.edu.cn;ygguo@iccas.ac.cn

Regulating Lithium Metal Nucleation and Growth for Dendrite Suppression: From Liquid-Electrolyte to Solid-State Batteries

Ao Dua,#, Juan Zhangb,#, Pan Xuc,#, Ya-Jie Lid,#, Kang-Yu Yie,#, Zhen-Zhen Shenb,#, Hui-Lin Gea, Guang-Wen Zhanga, Chao-Hui Zhangb, Yu-Hao Wangb, Chen-Zi Zhaoc,g, Meng-Yang Xud, Yu-Lin Jiee, Rui Wenb,f,*(), Shu-Hong Jiaoe,*(), Si-Qi Shid,i,*(), Qiang Zhangc,g,h,*(), Chun-Peng Yanga,*(), Yu-Guo Guob,f,*()   

  1. a Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
    b CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
    c Beijing Key Laboratory of Complex Solid-State Batteries & Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
    d State Key Laboratory of Materials for Advanced Nuclear Energy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
    e State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
    f School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
    g The Innovation Center for Smart Solid State Batteries, Yibin 644002, Sichuan, P. R. China
    h Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, P.R. China
    i Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
    j State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Electrochemical Process and Technology of Materials Beijing University of Chemical Technology, Beijing 100029, P. R. China
  • Received:2025-07-06 Revised:2025-10-09 Accepted:2025-11-12 Online:2025-11-12 Published:2025-11-12
  • Contact: Rui Wen, Shu-Hong Jiao, Si-Qi Shi, Qiang Zhang, Chun-Peng Yang, Yu-Guo Guo E-mail:ruiwen@iccas.ac.cn;jiaosh@ustc.edu.cn;sqshi@shu.edu.cn;zhang-qiang@mails.tsinghua.edu.cn;cpyang@tju.edu.cn;ygguo@iccas.ac.cn
  • About author:First author contact:

    #Ao Du, Juan Zhang, Pan Xu, Ya-Jie Li, Kang-Yu Yi and Zhen-Zhen Shen contributed equally in this work.

摘要:

锂金属负极的理论容量高达3860 mAh·g-1,被视为开发下一代高能量密度电池的核心基础。然而,其实际应用受到多项关键挑战的阻碍,包括枝晶形成、不稳定的固体电解质界面(SEI)、与电解质的副反应,以及由此引发的安全风险。本综述系统探讨了液态和固态电池体系中锂的成核、生长与脱嵌机制,深入分析了理解枝晶生长成因至关重要的关键理论概念,如异相成核热力学、表面扩散动力学、空间电荷效应及 SEI 诱导成核。此外,综述还讨论了导致 SEI 降解和死锂形成的电化学-力学耦合失效问题。针对液态电池体系,综述提出了抑制枝晶形成与SEI不稳定性的策略,包括电解质优化、人工SEI设计及电极骨架设计。在固态电池方面,综述对聚合物、硫化物和卤化物电解质相关的界面挑战进行了细致分析,并针对不同类型的固态电解质总结了相应的解决方案。同时,综述强调了先进表征技术与计算模拟在理解和调控锂金属-电解质界面过程中的重要性。展望未来,综述指出了未来的研究方向:需重视跨学科方法的整合,以应对这些相互关联的挑战。通过解决这些问题,锂金属电池的快速商业化与广泛应用之路将更加清晰,使我们更接近实现稳定、高能量密度的电池,从而满足各行业现代储能应用日益增长的需求。

关键词: 锂金属负极, 固体电解质界面, 锂枝晶, 液态电解质电池, 固态电池

Abstract:

Lithium metal anodes, with a theoretical capacity of up to 3860 mAh·g−1, are regarded as the cornerstone for developing next-generation high-energy-density batteries. However, several key challenges hinder their practical applications, including dendrite formation, unstable solid electrolyte interphase (SEI), side reactions with electrolytes, and associated safety risks. This review systematically explores the mechanisms of lithium nucleation, growth, and stripping in both liquid and solid-state battery systems, analyzing critical theoretical concepts like heterogeneous nucleation thermodynamics, surface diffusion kinetics, space charge effects, and SEI-induced nucleation, which are crucial for understanding the genesis of dendrite growth. Additionally, the review discusses the electrochemical-mechanical coupling failures that lead to SEI degradation and the formation of dead lithium. For liquid systems, the review proposes strategies to mitigate dendrite formation and SEI instability, which include electrolyte optimization, artificial SEI design, and electrode framework design. In solid-state batteries, the review offers a granular analysis of the interface challenges associated with polymer, sulfide, and halide electrolytes and summarizes different solutions for different solid-state electrolytes. Meanwhile, the review emphasizes the importance of advanced characterization techniques and computational modeling in understanding and regulating the interface between lithium metal and electrolytes. Looking ahead, the review highlights future research directions that emphasize the integration of cross-disciplinary approaches to tackle these interconnected challenges. By addressing these issues, the path will be clear for the rapid commercialization and widespread application of lithium metal batteries, bringing us closer to realizing stable, high-energy-density batteries that can satisfy the escalating demands of modern energy storage applications across various industries.

Key words: Lithium metal anodes, Solid electrolyte interphase, Lithium dendrite, Liquid-electrolyte battery, Solid-state battery