[1] |
Wang Y J, Qiao J L, Baker R, Zhang J J. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem. Soc. Rev., 2013, 42(13): 5768-5787.
doi: 10.1039/c3cs60053j
URL
|
[2] |
Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Anion-exchange membranes in electrochemical energy systems[J]. Energy Environ. Sci., 2014, 7(10): 3135-3191.
doi: 10.1039/C4EE01303D
URL
|
[3] |
Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chem. Rev., 2017, 117(3): 987-1104.
doi: 10.1021/acs.chemrev.6b00159
pmid: 28112903
|
[4] |
Ramaswamy N, Mukerjee S. Alkaline anion-exchange membrane fuel cells: Challenges in electrocatalysis and interfacial charge transfer[J]. Chem. Rev., 2019, 119(23): 11945-11979.
doi: 10.1021/acs.chemrev.9b00157
pmid: 31702901
|
[5] |
Wang L, Bellini M, Miller H A, Varcoe J R. A high conductivity ultrathin anion-exchange membrane with 500+ H alkali stability for use in alkaline membrane fuel cells that can achieve 2 W·cm-2 at 80 °C[J]. J. Mater. Chem. A, 2018, 6(31): 15404-15412.
doi: 10.1039/C8TA04783A
URL
|
[6] |
Du X M, Zhang H Y, Yuan Y J, Wang Z, Xu J M. Synthesizing spindle-shaped anion exchange membranes to improve conductivity and stability[J]. Int. J. Hydrog. Energy, 2020, 45(20): 11814-11823.
doi: 10.1016/j.ijhydene.2020.02.090
URL
|
[7] |
Frumkin A N, Petrii O A. Potentials of zero total and zero free charge of platinum group metals[J]. Electrochim. Acta, 1975, 20(5): 347-359.
doi: 10.1016/0013-4686(75)90017-1
URL
|
[8] |
Kolb D M. Book review: Comprehensive treatise of electrochemistry. Vol. 1. The double layer. Edited by J. O'm. Bockris, B. E. Conway and E. Yeager[J]. Angew. Chem. Int. Ed, 1981, 20(9): 817-818.
|
[9] |
Zha Q X. The introduction of electrode process kinetics[M]. 2nd ed. Beijing: Science Press, 2002.
|
[10] |
Attard G A, Ahmadi A. Anion—surface interactions Part 3. N2O reduction as a chemical probe of the local potential of zero total charge[J]. J. Electroanal. Chem, 1995, 389(1): 175-190.
doi: 10.1016/0022-0728(95)03927-9
URL
|
[11] |
Cuesta A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: The potential of zero charge of Pt(111)[J]. Surf. Sci., 2004, 572(1): 11-22.
doi: 10.1016/j.susc.2004.08.014
URL
|
[12] |
Silva C D, Cabello G, Christinelli W A, Pereira E C, Cuesta A. Simultaneous time-resolved ATR-SEIRAS and CO-charge displacement experiments: The dynamics of CO adsorption on polycrystalline Pt[J]. J. Electroanal. Chem, 2017, 800: 25-31.
doi: 10.1016/j.jelechem.2016.10.034
URL
|
[13] |
Iwasita T, Xia X. Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge[J]. J. Electroanal. Chem, 1996, 411(1): 95-102.
doi: 10.1016/0022-0728(96)04576-7
URL
|
[14] |
Czajkowski J M, Blaszczyk T, Kazmierczak D. Automatic-apparatus for precise measuring and recording of PZC value of liquid electrodes and its application[J]. Electrochim. Acta, 1984, 29(4): 439-443.
doi: 10.1016/0013-4686(84)87091-7
URL
|
[15] |
Hamm UW, Kramer D, Zhai R S, Kolb D M. The PZC of Au(111) and Pt(111) in a perchloric acid solution: An ex situ approach to the immersion technique[J]. J. Electroanal. Chem, 1996, 414(1): 85-89.
doi: 10.1016/0022-0728(96)01006-6
URL
|
[16] |
Gnahm M, Pajkossy T, Kolb D M. The interface between Au(111) and an ionic liquid[J]. Electrochim. Acta, 2010, 55(21): 6212-6217.
doi: 10.1016/j.electacta.2009.08.031
URL
|
[17] |
Gnahm M, Muller C, Repanszki R, Pajkossy T, Kolb D M. The interface between Au(100) and 1-butyl-3-methyl-imidazolium-hexafluorophosphate[J]. Phys. Chem. Chem. Phys., 2011, 13(24): 11627-11633.
doi: 10.1039/c1cp20562e
pmid: 21594266
|
[18] |
Müller C, Vesztergom S, Pajkossy T, Jacob T. Immersion measurements of potential of zero total charge ( Pztc ) of Au(100) in an ionic liquid[J]. Electrochim. Acta, 2016, 188: 512-515.
doi: 10.1016/j.electacta.2015.11.141
URL
|
[19] |
Ojha K, Arulmozhi N, Aranzales D, Koper M T M. Double layer at the Pt(111)-aqueous electrolyte interface: Potential of zero charge and anomalous gouy-chapman screening[J]. Angew. Chem. Int. Ed., 2020, 59(2): 711-715.
doi: 10.1002/anie.201911929
pmid: 31682314
|
[20] |
Ojha K, Doblhoff-Dier K, Koper M T M. Double-layer structure of the Pt(111)-aqueous electrolyte interface[J]. Proc. Natl. Acad. Sci. U.S.A., 2022, 119(3): e2116016119.
|
[21] |
Peng H Q, Li Q H, Hu M X, Xiao L, Lu J T, Zhuang L. Alkaline polymer electrolyte fuel cells stably working at 80 °C[J]. J. Power Sources, 2018, 390: 165-167.
doi: 10.1016/j.jpowsour.2018.04.047
URL
|
[22] |
Ma Z, Lin J Y, Nan W J, Han L H, Zhan D P. Ultramicroelectrode experiments: Principles, fabrications and voltmmetric behaviors[J]. J. Electrochem., 2022, DOI: 1006-3471(2022)00-0000-00.
|
[23] |
Ramaswamy N, Mukerjee S. Influence of inner-and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media[J]. J. Phys. Chem. C, 2011, 115(36): 18015-18026.
doi: 10.1021/jp204680p
URL
|
[24] |
Liao L W, Li M F, Kang J, Chen D, Chen Y X, Ye S. Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes[J]. J. Electroanal. Chem., 2013, 688: 207-215.
doi: 10.1016/j.jelechem.2012.08.031
URL
|
[25] |
Podlovchenko B I, Kolyadko E A. Variations in the charge and open-circuit potential of a platinum electrode during adsorption of iodine and iodide ions[J]. Russ. J. Electrochem., 2000, 36(12): 1268-1274.
doi: 10.1023/A:1026695412672
URL
|
[26] |
Bagotzky V S, Vassilyev Y B, Weber J, Pirtskhalava J N. Adsorption of anions on smooth platinum electrodes[J]. J. Electroanal. Chem., 1970, 27(1): 31-46.
doi: 10.1016/S0022-0728(70)80200-5
URL
|
[27] |
Brug G J, van den Eeden A L G, Sluyters-Rehbach M, Sluyters J H. The analysis of electrode impedances complicated by the presence of a constant phase element[J]. J. Electroanal. Chem., 1984, 176(1): 275-295.
doi: 10.1016/S0022-0728(84)80324-1
URL
|
[28] |
Pajkossy T, Kolb D M. On the origin of the double layer capacitance maximum of Pt(111) single crystal electrodes[J]. Electrochem. Commun., 2003, 5(4): 283-285.
doi: 10.1016/S1388-2481(03)00046-8
URL
|
[29] |
Schuler T, Chowdhury A, Freiberg A T, Sneed B, Spingler F B, Tucker M C, More K L, Radke C J, Weber A Z. Fuel-cell catalyst-layer resistance via hydrogen limiting-current measurements[J]. J. Electrochem. Soc., 2019, 166(7): F3020-F3031.
|
[30] |
Srebnik S, Pusara S, Dekel D R. Effect of carbonate anions on quaternary ammonium-hydroxide interaction[J]. J. Phys. Chem. C, 2019, 123(26): 15956-15962.
doi: 10.1021/acs.jpcc.9b03131
|
[31] |
Hanawa H, Kunimatsu K, Watanabe M, Uchida H. In Situ ATR-FTIR analysis of the structure of nafion-Pt/C and nafion-Pt3Co/C interfaces in fuel cell[J]. J. Phys. Chem. C, 2012, 116(40): 21401-21406.
doi: 10.1021/jp306955q
URL
|
[32] |
Ahmed M, Morgan D, Attard G A, Wright E, Thompsett D, Sharman J. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{Hkl} electrodes[J]. J. Phys. Chem. C, 2011, 115(34): 17020-17027.
doi: 10.1021/jp2044042
URL
|
[33] |
Park E J, Arges C G, Xu H, Kim Y S. Membrane strategies for water electrolysis[J]. ACS Energy Lett., 2022, 7(10): 3447-3457.
doi: 10.1021/acsenergylett.2c01609
URL
|
[34] |
Rizo R, Sitta E, Herrero E, Climent V, Feliu J M. Towards the understanding of the interfacial pH scale at Pt(111) electrodes[J]. Electrochim. Acta, 2015, 162: 138-145.
doi: 10.1016/j.electacta.2015.01.069
URL
|
[35] |
Mello G A B, Briega-Martos V, Climent V, Feliu J M. Bromide adsorption on Pt(111) over a wide range of pH: Cyclic voltammetry and CO displacement experiments[J]. J. Phys. Chem. C, 2018, 122(32): 18562-18569.
doi: 10.1021/acs.jpcc.8b05685
URL
|
[36] |
Xu P, von Rueden A D, Schimmenti R, Mavrikakis M, Suntivich J. Optical Method for Quantifying the potential of zero charge at the platinum-water electrochemical interface[J]. Nat. Mater., 2023, 22(4): 503-510.
doi: 10.1038/s41563-023-01474-8
pmid: 36781952
|