[1]Gilroy S, Swanson S. Ros in plant development[J]. Physiologia Plantarum, 2010, 138(4): 384-392.[2]Torres M A. Ros in biotic interactions[J]. Physiologia Plantarum, 2010, 138(4): 414-429.[3]Orozco-Cardenas M L, Narvaez-Vasquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate[J]. Plant Cell, 2001, 13(1): 179-191.[4]Torres M A, Jones J D, Dangl J L. Reactive oxygen species signaling in response to pathogens[J]. Plant Physiology, 2006, 141(2): 373-378.[5]Gemes K , Poor P, Horvath E, et al. Cross-talk between salicylic acid and nacl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity[J]. Physiologia Plantarum, 2011, 142(2): 179-192.[6]Shetty N P, Jorgensen H J L, Jensen J D, et al. Roles of reactive oxygen species in interactions between plants and pathogens[J]. European Journal of Plant Pathology, 2008, 121(3): 267-280. [7]Dixit R, Cyr R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: Effect on mitosis and guidelines for non-invasive fluorescence microscopy[J]. Plant Journal, 2003, 36(2): 280-290.[8]O’Brien J A, Daudi A, Finch P, et al. Peroxidase-dependent apoplastic oxidative burst in cultured arabidopsis cells functions in MAMP-elicited defense[J]. Plant Physiology, 2012, 158(4): 2013-2027.[9]Bolwell G P, Davies D R, Gerrish C, et al. Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms[J]. Plant Physiology, 1998, 116(4): 1379-1385.[10]Srivastava V, Schinkel H, Witzell J, et al. Downregulation of high-isoelectric-point extracellular superoxide dismutase mediates alterations in the metabolism of reactive oxygen species and developmental disturbances in hybrid aspen[J]. Plant Journal. 2007, 49(1): 135-148.[11]Kotchoni S O, Gachomo E W. The reactive oxygen species network pathways: An essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants[J]. Journal of Biosciences, 2006, 31(3):389-404.[12]Yamashiro N, Uchida S, Satoh Y, et al. Determination of hydrogen peroxide in water by chemiluminescence detection, (i) flow injection type hydrogen peroxide detection system[J]. Journal of Nuclear Science and Technology, 2004, 41(9):890- 897.[13]Li H M, Li O L, Wang X, et al. Simultaneous determination of superoxide and hydrogen peroxide in macrophage raw 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection[J]. Analytical Chemistry, 2009, 81(6): 2193-2198.[14]Chen Z Z, Li Q L, Wang X, et al. Potent method for the simultaneous determination of glutathione and hydrogen peroxide in mitochondrial compartments of apoptotic cells with microchip electrophoresis-laser induced fluorescence[J]. Analytical Chemistry, 2010, 82(5): 2006-2012.[15]Gong X C, Li Q L, Xu K H, et al. A new route for simple and rapid determination of hydrogen peroxide in raw264.7 macrophages by microchip electrophoresis[J]. Electrophoresis, 2009, 30(11): 1983-1990.[16]Wightman R M, Jankowski J A , Kennedy R T, et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proceedings of the National Academy of Sciences, 1991, 88(23): 10754-10758.[17]Schuhmann W, Schulte A. Single-cell microelectrochemistry[J]. Angewandte Chemie International Edition, 2007, 46(46): 8760-8777.[18]Amatore C, Hu R, Guille M, et al. In situ electrochemical monitoring of reactive oxygen and nitrogen species released by single mg63 osteosarcoma cell submitted to a mechanical stress[J]. The Journal of Chemical Physics, 2010, 12(34): 10048-10054.[19]Ai F, Chen H, Zhang S H, et al. Real-time monitoring of oxidative burst from single plant protoplastsusin microelectrochemical sensors modified by platinum nanoparticles[J]. Analytical Chemistry, 2009, 81(20): 8453-8458.[20]Patykowski J. Role of hydrogen peroxide and apoplastic peroxidase in tomato-botrytis cinerea interaction [J]. Acta Physiologiae Plantarum, 2006, 28(6): 589-598.[21]Minibayeva F, Kolesnikov O, Chasov A, et al. Wound-induced apoplastic peroxidase activities: Their roles in the production and detoxification of reactive oxygen species[J]. Plant Cell and Environment, 2009, 32(5): 497-508.[22]Forsberg J, Landgren M, Glimelius, K. Fertile somatic hybrids between brassica napus and arabidopsis thaliana[J]. Plant Science, 1994, 95(2): 213-223.[23]Saka K, Katterman F R, Thomas J C. Cell regeneration and sustained division of protoplasts from cotton[J]. Plant Cell Reports, 1987, 6(6): 470-472.[24]Thomas T D. Isolation, callus formation and plantlet regeneration from mesophyll protoplasts of tylophora indica (burm. F.) merrill: An important medicinal plant[J]. In Vitro Cellular & Developmental Biology - Plant, 2009, 45(5): 591-598.[25]Xia Y, Whitesides G M. Soft lithography[J]. Angewandte Chemie International Edition, 1998, 37(5): 550-575.[26]Wightman R M. Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311(5767): 1570-1574.[27]Amatore C, Arbault S, Guille M, et al. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress[J]. Chemical Reviews, 2008, 108(7): 2585-2621. [28]Quan L J, Zhang B, Shi W W, et al. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2-18.[29]Morina F, JovanovicL, Mojovic M, et al. Zinc- induced oxidative stress in verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall[J]. Physiologia Plantarum, 2010, 140(3): 209-224.[30]Luo Y, Liu Y B, Dong Y X, et al. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in arabidopsis by enhancing the capacities for ros scavenging and osmotic adjustment[J]. Journal of Plant Physiology, 2009, 166(4): 385-394.[31]Deepak S A, Ishii H, Park P. Acibenzolar-s-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack[J].Physiological and Molecular Plant Pathology, 2006, 69(1): 52-61.[32]Brisch E, Daggett M A, Suprenant K A. Cell cycle-dependent phosphorylation of the 77 kda echinoderm microtubule-associated protein (EMAP) in vivo and association with the p34(cdc2) kinase[J]. Journal of Cell Science, 1996, 109(12): 2885-2893. |