[1] |
Kaplan A, Yuan Z, Benck J D, Govind R A, Chu X S, Wang Q H, Strano M S. Current and future directions in electron transfer chemistry of graphene[J]. Chem. Soc. Rev., 2017, 46(15): 4530-4571.
doi: 10.1039/c7cs00181a
pmid: 28621376
|
[2] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys. Rev. Lett., 2008, 100(1): 016602.
|
[3] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308.
|
[4] |
Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y. The thermal stability of graphene in air investigated by Raman spectroscopy[J]. J. Raman Spectrosc., 2013, 44(7): 1018-1021.
doi: 10.1002/jrs.v44.7
URL
|
[5] |
He Q Y, Wu S X, Yin Z Y, Zhang H. Graphene-based electronic sensors[J]. Chem. Sci., 2012, 3(6): 1764-1772.
doi: 10.1039/c2sc20205k
URL
|
[6] |
Biro L P, Nemes-Incze P, Lambin P. Graphene: Nanoscale processing and recent applications[J]. Nanoscale, 2012, 4(6): 1824-1839.
doi: 10.1039/c1nr11067e
pmid: 22080243
|
[7] |
Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics[J]. Nanoscale, 2015, 7(18): 8261-8283.
doi: 10.1039/c5nr01052g
pmid: 25898786
|
[8] |
Wei T, Bao L, Hauke F, Hirsch A. Recent advances in graphene patterning[J]. Chempluschem, 2020, 85(8): 1655-1668.
doi: 10.1002/cplu.202000419
pmid: 32757359
|
[9] |
Wei T, Hauke F, Hirsch A. Evolution of graphene patterning: From dimension regulation to molecular engineering[J]. Adv. Mater., 2021, 33(45): 2104060.
|
[10] |
Zheng Y Q, Wang H, Hou S F, Xia D Y. Lithographically defined graphene patterns[J]. Adv. Mater. Technol., 2017, 2(5): 1600237
|
[11] |
Park J U, Nam S, Lee M S, Lieber C M. Synthesis of monolithic graphene-graphite integrated electronics[J]. Nat. Mater., 2011, 11(2): 120-125.
doi: 10.1038/nmat3169
|
[12] |
Choi J K, Kwak J, Park S D, Yun H D, Kim S Y, Jung M, Kim S Y, Park K, Kang S, Kim S D, Park D Y, Lee D S, Hong S K, Shin H J, Kwon S Y. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene[J]. ACS Nano, 2015, 9(1): 679-686.
doi: 10.1021/nn5060909
URL
|
[13] |
Zhou X B, Qi Y, Shi J P, Niu J J, Liu M X, Zhang G H, Li Q C, Zhang Z P, Hong M, Ji Q Q, Zhang Y, Liu Z F, Wu X S, Zhang Y F. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001)[J]. ACS Nano, 2016, 10(8): 7550-7557.
doi: 10.1021/acsnano.6b02548
pmid: 27478993
|
[14] |
Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820-823.
doi: 10.1038/nature08105
|
[15] |
Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L. Bandgap opening in graphene induced by patterned hydrogen adsorption[J]. Nat. Mater., 2010, 9(4): 315-319.
doi: 10.1038/nmat2710
pmid: 20228819
|
[16] |
Wu J, Xie L M, Li Y G, Wang H L, Ouyang Y J, Guo J, Dai H J. Controlled chlorine plasma reaction for noninvasive graphene doping[J]. J. Am. Chem. Soc., 2011, 133(49): 19668-19671.
doi: 10.1021/ja2091068
pmid: 22082226
|
[17] |
Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N. Tunable bandgap in graphene by the controlled adsorption of water molecules[J]. Small, 2010, 6(22): 2535-2538.
doi: 10.1002/smll.201001384
pmid: 20963796
|
[18] |
Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S. Control of graphene's properties by reversible hydrogenation: Evidence for graphane[J]. Science, 2009, 323(5914): 610-613.
doi: 10.1126/science.1167130
pmid: 19179524
|
[19] |
Wei T, Kohring M, Chen M, Yang S, Weber H B, Hauke F, Hirsch A. Highly efficient and reversible covalent patterning of graphene: 2D-management of chemical information[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(14): 5602-5606.
doi: 10.1002/anie.v59.14
URL
|
[20] |
Zeng L P, Song W Y, Jin X F, He Q F, Han L H, Wu Y F, Lagrost C, Leroux Y, Hapiot P, Cao Y, Cheng J, Zhan D P. Electrochemical regulation of the band gap of single layer graphene: From semimetal to semiconductor[J]. Chem. Sci., 2023, 14(17): 4500-4505.
doi: 10.1039/d2sc06800a
pmid: 37152253
|
[21] |
Chen D H, Lin Z, Sartin M M, Huang T X, Liu J, Zhang Q G, Han L H, Li J F, Tian Z Q, Zhan D P. Photosynergetic electrochemical synthesis of graphene oxide[J]. J. Am. Chem. Soc., 2020, 142(14): 6516-6520.
doi: 10.1021/jacs.0c02158
pmid: 32207939
|
[22] |
Zhong J H, Zhang J, Jin X, Liu J Y, Li Q, Li M H, Cai W, Wu D Y, Zhan D, Ren B. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene[J]. J. Am. Chem. Soc., 2014, 136(47): 16609-16617.
doi: 10.1021/ja508965w
pmid: 25350471
|
[23] |
Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat. Nanotechnol., 2013, 8(4): 235-246.
doi: 10.1038/nnano.2013.46
pmid: 23552117
|
[24] |
Li W, Li Y Q, Xu K. Facile, electrochemical chlorination of graphene from an aqueous nacl solution[J]. Nano Lett., 2021, 21(2): 1150-1155.
doi: 10.1021/acs.nanolett.0c04641
URL
|
[25] |
Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S, Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Lett., 2012, 12(8): 3925-3930.
doi: 10.1021/nl300901a
pmid: 22764888
|
[26] |
Li B, Zhou L, Wu D, Peng H L, Yan K, Zhou Y, Liu Z F. Photochemical chlorination of graphene[J]. ACS Nano, 2011, 5(7): 5957-5961.
doi: 10.1021/nn201731t
pmid: 21657242
|