[1] |
Alaswad A, Baroutaji A, Achour H, Carton J, Al Makky A, Olabi A G. Developments in fuel cell technologies in the transport sector[J]. Int. J. Hydrog. Energy, 2016, 41(37): 16499-16508.
doi: 10.1016/j.ijhydene.2016.03.164
URL
|
[2] |
Chen W H, Chen S L. Effect of ink solvents on low-Pt loading proton exchange membrane fuel cell performance[J]. Acta Phys.-Chim. Sin., 2019, 35(5): 517-522.
doi: 10.3866/PKU.WHXB201806011
URL
|
[3] |
Liu Q S, Lan F C, Chen J Q, Zeng C J, Wang J F. A review of proton exchange membrane fuel cell water management: Membrane electrode assembly[J]. J. Power Sources, 2022, 517: 230723.
doi: 10.1016/j.jpowsour.2021.230723
URL
|
[4] |
Wu C W, Zhang W, Han X, Zhang Y X, Ma G J. A systematic review for structure optimization and clamping load design of large proton exchange membrane fuel cell stack[J]. J. Power Sources, 2020, 476: 228724.
doi: 10.1016/j.jpowsour.2020.228724
URL
|
[5] |
Wang Y, Diaz D F R, Chen K S, Wang Z, Adroher X C. Materials, technological status, and fundamentals of PEM fuel cells - A review[J]. Mater. Today, 2020, 32: 178-203.
doi: 10.1016/j.mattod.2019.06.005
URL
|
[6] |
Wang X R, Ma Y, Gao, J, Li T, Jiang G Z, Sun Z Y. Review on water management methods for proton exchange membrane fuel cells[J]. Int. J. Hydrog. Energy, 2021, 46(22): 12206-12229.
doi: 10.1016/j.ijhydene.2020.06.211
URL
|
[7] |
Avcioglu G S, Ficicilar B, Bayrakceken A, Eroglu I. High performance PEM fuel cell catalyst layers with hydrophobic channels[J]. Int. J. Hydrog. Energy, 2015, 40(24): 7720-7731.
doi: 10.1016/j.ijhydene.2015.02.004
URL
|
[8] |
Chi B, Hou S Y, Liu G Z, Deng Y J, Zeng J H, Song H Y, Liao S J, Ren J W. Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)[J]. Electrochim. Acta, 2018, 277: 110-115.
doi: 10.1016/j.electacta.2018.04.213
URL
|
[9] |
Chi B, Ye Y K, Lu X Y, Jiang S J, Du L, Zeng J H, Ren J W, Liao S J. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer[J]. J. Power Sources, 2019, 443: 227284.
doi: 10.1016/j.jpowsour.2019.227284
URL
|
[10] |
Wang M, Chen M, Yang Z Y, Liu G C, Lee J K, Yang W, Wang X D. High-performance and durable cathode catalyst layer with hydrophobic C@PTFE particles for low-Pt loading membrane assembly electrode of PEMFC[J]. Energy Conv. Manag., 2019, 191: 132-140.
doi: 10.1016/j.enconman.2019.04.014
URL
|
[11] |
Cai X, Lin R, Wang H, Liu S C, Zhong D. One simple method to improve the mass transfer of membrane electrode assembly to realize operation under wide humidity[J]. J. Power Sources, 2021, 506: 230185.
doi: 10.1016/j.jpowsour.2021.230185
URL
|
[12] |
Roh C W, Choi J, Lee H. Hydrophilic-hydrophobic dual catalyst layers for proton exchange membrane fuel cells under low humidity[J]. Electrochem. Commun., 2018, 97: 105-109.
doi: 10.1016/j.elecom.2018.11.003
URL
|
[13] |
Qiu Y L, Zhang H M, Zhong H X, Zhang F X. A novel cathode structure with double catalyst layers and low Pt loading for proton exchange membrane fuel cells[J]. Int. J. Hydrog. Energy, 2013, 38 (14): 5836-5844.
doi: 10.1016/j.ijhydene.2013.02.118
URL
|
[14] |
Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 43: 33-39.
doi: 10.1016/j.jechem.2019.07.015
|
[15] |
Yakovlev Y V, Lobko Y V, Vorokhta M, Nováková J, Mazur M, Matolínová I, Matolín V. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells[J]. J. Power Sources, 2021, 490: 229531.
doi: 10.1016/j.jpowsour.2021.229531
URL
|
[16] |
Xue Q, Li J K, Yang Z Y. Synergistically improving the activity, antipoisonous ability, and long-term stability of Pt to methanol oxidation through developing favorable graphene-based supports[J]. Langmuir, 2017, 33(4): 872-880.
doi: 10.1021/acs.langmuir.6b03733
pmid: 28051873
|