[1] |
Xu S S, Lü Y P, Zhang Y. 3D hydrangea-like Mn3O4@(PSS/PDDA/Pt)n with ultrafine Pt nanoparticles modified anode for electrochemical oxidation of tetracycline[J]. J. Taiwan Inst. Chem. E., 2020, 112: 240-250.
doi: 10.1016/j.jtice.2020.06.009
URL
|
[2] |
Tang S F, Zhao M Z, Yuan D L, Li X, Wang Z T, Zhang X Y, Jiao T F, Ke J. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation[J]. Chemosphere, 2021, 268: 129315.
doi: 10.1016/j.chemosphere.2020.129315
URL
|
[3] |
Ren F J, Wang T, Liu H T, Liu D S, Zhong R, You C Y, Zhang W J, Lv S Y, Liu S S, Zhu H, Chang L, Wang B. CoMn2O4 nanoparticles embed in graphene oxide aerogel with three-dimensional network for practical application prospects of oxytetracycline degradation[J]. Sep. Purif. Te-chnol., 2021, 259: 118179.
|
[4] |
Halling-Sorensen B, Sengelov G, Tjornelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Arch. Environ. Contam. Toxicol., 2002, 42(3): 263-271.
doi: 10.1007/s00244-001-0017-2
URL
|
[5] |
Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review[J]. Environ Chem Lett., 2013, 11(3): 209-227.
doi: 10.1007/s10311-013-0404-8
URL
|
[6] |
Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. J. Colloid Interface Sci., 2012, 368: 540-546.
doi: 10.1016/j.jcis.2011.11.015
URL
|
[7] |
Khan M H, Bae H, Jung J Y. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway[J]. J. Hazard. Mater., 2010, 181(1-3): 659-665.
doi: 10.1016/j.jhazmat.2010.05.063
URL
|
[8] |
Yang Q X, Yang X F, Yan Y, Sun C, Wu H J, He J, Wang D S. Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism[J]. Chem. Eng. J., 2018, 348: 263-270.
doi: 10.1016/j.cej.2018.04.206
URL
|
[9] |
Wang J B, Zhi D, Zhou H, He X W, Zhang D Y. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Res., 2018, 137: 324-334.
doi: 10.1016/j.watres.2018.03.030
URL
|
[10] |
Zhang Y Q, Zuo S J, Zhang Y, Ren G B, Pan Y W, Zhang Q Z, Zhou M H. Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent[J]. J. Hazard. Mater., 2019, 368: 771-777.
doi: 10.1016/j.jhazmat.2019.02.005
URL
|
[11] |
Xie L B, Mi X Y, Liu Y G, Li Y, Sun Y, Zhan S H, Hu W P. Highly efficient degradation of polyacrylamide by an Fe-doped Ce0.75Zr0.25O2 solid solution/CF composite cathode in a heterogeneous electro-fenton process[J]. ACS Appl. Mater. Interfaces., 2019, 11(34): 30703-30712.
doi: 10.1021/acsami.9b06396
URL
|
[12] |
Guo P C, Qiu H B, Yang C W, Zhang X, Shao X Y, Lai Y L, Sheng G P. Highly efficient removal and detoxification of phenolic compounds using persulfate activated by MnOx@OMC: Synergistic mechanism and kinetic analysis[J]. J. Hazard. Mater., 2021, 402(15): 123846-123855.
doi: 10.1016/j.jhazmat.2020.123846
URL
|
[13] |
Guo H, Su S, Liu Y, Ren X H, Guo W L. Enhanced catalytic activity of MIL-101(Fe) with coordinatively unsaturated sites for activating persulfate to degrade organic pollutants[J]. Environ. Sci. Pollut. Res., 2020, 27: 17194-17204.
doi: 10.1007/s11356-020-08316-z
URL
|
[14] |
Gao Y, Wang Q, Ji G Z, Li A M. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chem. Eng. J., 2022, 429: 132387-132400.
doi: 10.1016/j.cej.2021.132387
URL
|
[15] |
Song H R, Yan L X, Jiang J, Ma J, Pang S Y, Zhai X D, Zhang W, Li D. Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes[J]. Chem. Eng. J., 2018, 344: 12-20.
doi: 10.1016/j.cej.2018.03.050
URL
|
[16] |
Cao M H, Hou Y Z, Zhang E, Tu S X, Xiong S L. Ascorbic acid induced activation of persulfate for pentachloro-phenol degradation[J]. Chemosphere, 2019, 229: 200-205.
doi: 10.1016/j.chemosphere.2019.04.135
URL
|
[17] |
Matzek L W, Carter K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151: 178-188.
doi: 10.1016/j.chemosphere.2016.02.055
pmid: 26938680
|
[18] |
Keyikoglu R, Karatas O, Khataee A, Kobya M, Can O T, Soltani R D C, Isleyen M. Peroxydisulfate activation by in-situ synthesized Fe3O4 nanoparticles for degradation of atrazine: Performance and mechanism[J]. Sep. Purif. Te-chnol., 2020, 247: 116925.
|
[19] |
Ganiyu S O, Zhou M H, Martínez-Huitle C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Appl. Catal. B., 2018, 235: 103-129.
doi: 10.1016/j.apcatb.2018.04.044
URL
|
[20] |
Bagheri S, TermehYousefi A, Do T O. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach[J]. Catal. Sci. Technol., 2017, 7: 4548-4569.
doi: 10.1039/C7CY00468K
URL
|
[21] |
Ike I A, Linden K G, Orbell J D, Duke M. Critical review of the science and sustainability of persulphate advanced oxidation processes[J]. Chem. Eng. J., 2018, 338: 651-669.
doi: 10.1016/j.cej.2018.01.034
URL
|
[22] |
Zhang C, Li F, Wen R B, Zhang H K, Elumalai P, Zheng Q, Chen H Y, Yang Y J, Huang M Z, Ying G. G. Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater[J]. Water Res., 2020, 182: 115975.
doi: 10.1016/j.watres.2020.115975
URL
|
[23] |
Poblete R, Oller I, Maldonado M I, Cortes E. Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes[J]. J. Environ. Manage., 2019, 232: 45-51.
doi: 10.1016/j.jenvman.2018.11.030
URL
|
[24] |
Dong Z Y, Zhang Q, Chen B Y, Hong J M. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chem. Eng. J., 2019, 357: 337-347.
doi: 10.1016/j.cej.2018.09.179
URL
|