电化学(中英文) ›› 2022, Vol. 28 ›› Issue (2): 2108441. doi: 10.13208/j.electrochem.210844
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2021-10-06
修回日期:
2021-10-18
出版日期:
2022-02-28
发布日期:
2021-10-21
Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen*()
Received:
2021-10-06
Revised:
2021-10-18
Published:
2022-02-28
Online:
2021-10-21
Contact:
*Tel: (86-21)65981097, E-mail:
摘要:
在各类CO2还原电催化剂中,锡基材料获得了研究人员的广泛关注,但其总体催化性能仍然受催化剂电极的组成,形貌和结构的限制。在本研究中,我们利用Sn低熔点(m.p. 232oC)的特性,在聚多巴胺碳化的同时实现Sn的熔化与再结晶,合成了由氮掺杂碳层网络分散的异质结构Sn/SnO2纳米颗粒自支撑电极(Sn/SnO2@NC)。氮掺杂碳层网络有利于电子的富集,可提高催化剂电极的导电性,防止超细纳米粒子的团聚,并保护其不在电解液中溶解。在CO2饱和的0.5 mol·L-1 NaHCO3水溶液中,所制备Sn/SnO2@NC电极与没有碳层网络包覆的电极相比,其CO2还原催化性能得到了很大的提高。该Sn/SnO2@NC电极在-0.9 V(vs. RHE)的电解电压下,电流密度为17 mA·cm-2,甲酸盐产物的选择性为83%。通过偶联该CO2还原催化电极与商品化RuO2催化剂作为水氧化阳极,可实现持续的CO2/H2O电解。此外,以Sn/SnO2@NC为阴极,Zn箔为阳极,我们还构建了可充放电的水系Zn-CO2电池。该电池的输出开路电压为1.35 V,峰值功率密度为0.9 mW·cm-2。本研究为高性能CO2还原催化剂的设计提供了新的思路,同时可充放电Zn-CO2电池的构建为绿色能源转换和存储系统提供了新的方案。
滕雪, 牛艳丽, 巩帅奇, 刘璇, 陈作锋. 碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原[J]. 电化学(中英文), 2022, 28(2): 2108441.
Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen. Selective CO2 Reduction to Formate on Heterostructured Sn/SnO2 Nanoparticles Promoted by Carbon Layer Networks[J]. Journal of Electrochemistry, 2022, 28(2): 2108441.
Figure 3
(A) LSV curves in N2- and CO2-saturated 0.5 mol·L-1 NaHCO3 solutions for Sn/SnO2@NC and Sn/SnO2. (B) Profiles of the total current density with time in CO2-saturated 0.5 mol·L-1 NaHCO3 at Sn/SnO2@NC from -0.6 V to -1.2 V. (C) Variations in FE, FECO and FEH2 of Sn/SnO2@NC with the applied potential. (D) Variations in FE, FECO and FEH2 of Sn/SnO2 with the applied potential. (E) Potential-dependent, partial current densities for HCOO- formation at Sn/SnO2@NC and Sn/SnO2. (F) Stability test curve of Sn/SnO2@NC at -0.9 V for 20 h. (color on line)
Figure 4
(A) Schematic illustration of the CO2RR-OER full cell. (B) An OER polarization curve and electrolysis curve (the inset) of RuO2/Ti at 1.75 V in 0.5 mol·L-1 NaHCO3. (C) A CO2RR-OER polarization curve and electrolysis curve (the inset) with an applied cell voltage of 2.6 V for the full cell. (D) The digital photos showing the bubbles on the two electrodes during the solar-driven CO2RR-OER electrolysis. (color on line)
Figure 5
(A) Schematic illustration of an aqueous Zn-CO2 battery. During the discharge, Zn anode dissolution provides the driving force for CO2 reduction on the cathode; during the charge, Zn deposits on the anode and O2 forms on the cathode by energy input. (B) O2 evolution linear sweep voltammetric curve of Sn/SnO2@NC in 0.5 mol·L-1 KHCO3. (C) Charge-discharge polarization curves, and power density curve of Zn-CO2 battery shown in the inset. (D) Digital photograph of an assembled Zn-CO2 battery with the Sn/SnO2@NC cathode exhibiting the maximum open-circuit voltage of 1.35 V measured by a voltammeter. (E) Digital photograph of an electronic clock launched by the Zn-CO2 battery. (F) Galvanostatic discharge curves at different current densities. (G) Galvanostatic discharge-charge cycling curves at 1.5 mA·cm-2. (color on line)
[1] | Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nat. Commun., 2013, 4:1-8. |
[2] |
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy Environ. Sci., 2010, 3:43-81.
doi: 10.1039/B912904A URL |
[3] |
Zheng X, Han J, Fu Y, Deng Y, Liu Y, Yang Y, Wang T, Zhang L. Highly efficient CO2 reduction on ordered porous Cu electrode derived from Cu2O inverse opals[J]. Nano Energy, 2018, 48:93-100.
doi: 10.1016/j.nanoen.2018.03.023 URL |
[4] |
Yang H B, Hung S F, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang H Y, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen H M, Li C M, Zhang T, Liu B. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nat. Energy, 2018, 3:140-147.
doi: 10.1038/s41560-017-0078-8 URL |
[5] |
Li F, Chen L, Knowles G P, MacFarlane D R, Zhang J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity[J]. Angew. Chem. Int. Ed., 2017, 56:505-509.
doi: 10.1002/anie.201608279 URL |
[6] |
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56:11326-11353.
doi: 10.1002/anie.v56.38 URL |
[7] |
Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S. Metal-free carbon materials for CO2 electrochemical reduction[J]. Adv. Mater., 2017, 29:1701784.
doi: 10.1002/adma.v29.41 URL |
[8] |
Zhang R, Lv W, Lei L. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate[J]. Appl. Surf. Sci., 2015, 356:24-29.
doi: 10.1016/j.apsusc.2015.08.006 URL |
[9] |
Kas R, Kortlever R, Milbrat A, Koper M T, Mul G, Baltrusaitis J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Phys. Chem. Chem. Phys., 2014, 16:12194-12201.
doi: 10.1039/C4CP01520G URL |
[10] |
Joo F. Breakthroughs in hydrogen storage-formic Acid as a sustainable storage material for hydrogen[J]. ChemSusChem, 2008, 1:805-808.
doi: 10.1002/cssc.v1:10 URL |
[11] |
Grasemann M, Laurenczy G. Formic acid as a hydrogen source - recent developments and future trends[J]. Energy Environ. Sci., 2012, 5:8171.
doi: 10.1039/c2ee21928j URL |
[12] |
Tian Y, Li D, Li C, Liu J, Wu J, Liu G, Feng Y. Self-driving CO2-to-formate electro-conversion on Bi film electrode in novel microbial reverse-electrodialysis CO2 reduction cell[J]. Chem. Eng. J., 2021, 414:128671.
doi: 10.1016/j.cej.2021.128671 URL |
[13] |
Han N, Wang Y, Deng J, Zhou J, Wu Y, Yang H, Ding P, Li Y. Self-templated synjournal of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. J. Mater. Chem. A, 2019, 7:1267-1272.
doi: 10.1039/c8ta10959a |
[14] |
Kortlever R, Peters I, Koper S, Koper M T M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles[J]. ACS Catal., 2015, 5:3916-3923.
doi: 10.1021/acscatal.5b00602 URL |
[15] |
Wen G, Lee D U, Ren B, Hassan F M, Jiang G, Cano Z P, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production[J]. Adv. Energy Mater., 2018, 8:1802427.
doi: 10.1002/aenm.v8.31 URL |
[16] |
Zhao C, Wang J, Goodenough J B. Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes[J]. Electrochem. Commun., 2016, 65:9-13.
doi: 10.1016/j.elecom.2016.01.019 URL |
[17] |
Fang M, Zheng Z, Chen J, Chen Q, Liu D, Xu B, Wu J, Kuang Q, Xie Z. Surface structure-dependent electrocatalytic reduction of CO2 to C1 products on SnO2 catalysts[J]. Sustain. Energ. Fuels, 2020, 4:600-606.
doi: 10.1039/C9SE00678H URL |
[18] |
An X, Li S, Yoshida A, Wang Z, Hao X, Abudula A, Guan G. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustain. Chem. Eng., 2019, 7:9360-9368.
doi: 10.1021/acssuschemeng.9b00515 URL |
[19] |
Wu J, Bai X, Ren Z, Du S, Song Z, Zhao L, Liu B, Wang G, Fu H. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion[J]. Nano Res., 2020, 14:1053-1060.
doi: 10.1007/s12274-020-3149-2 URL |
[20] |
Lai J, Li S, Wu F, Saqib M, Luque R, Xu G. Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting[J]. Energy Environ. Sci., 2016, 9:1210-1214.
doi: 10.1039/C5EE02996A URL |
[21] |
Liu S, Xiao J, Lu X F, Wang J, Wang X, Lou X W D. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boun-daries[J]. Angew. Chem. Int. Ed., 2019, 58:8499-8503.
doi: 10.1002/anie.v58.25 URL |
[22] |
Deng W, Zhang L, Li L, Chen S, Hu C, Zhao Z J, Wang T, Gong J. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2019, 141:2911-2915.
doi: 10.1021/jacs.8b13786 URL |
[23] |
Ye K, Zhou Z, Shao J, Lin L, Gao D, Ta N, Si R, Wang G, Bao X. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction[J]. Angew. Chem. Int. Ed., 2020, 132:4844-4851.
doi: 10.1002/ange.v132.12 URL |
[24] |
Zhang A, He R, Li H, Chen Y, Kong T, Li K, Ju H, Zhu J, Zhu W, Zeng J. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angew. Chem. Int. Ed., 2018, 57:10954-10958.
doi: 10.1002/anie.201806043 URL |
[25] |
Zhang G, Huang X, Ma X, Liu Y, Ying Y, Guo X, Fu N, Yu F, Wu H, Zhu Y, Huang H. A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting[J]. J. Mater. Chem. A, 2021, 9:7606-7616.
doi: 10.1039/D0TA12021A URL |
[26] |
Shi J, Qiu F, Yuan W, Guo M, Lu Z H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting[J]. Chem. Eng. J., 2021, 403:126312.
doi: 10.1016/j.cej.2020.126312 URL |
[27] |
Han Y, Chen X, Qian C, Zhang X, He W, Ren H, Li H, Diao G, Chen M. Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: an efficient oxygen evolution electrocatalyst[J]. Chem. Eng. J., 2021, 420:130461.
doi: 10.1016/j.cej.2021.130461 URL |
[28] |
Liu Z, Tang B, Gu X, Liu H, Feng L. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395:125170.
doi: 10.1016/j.cej.2020.125170 URL |
[29] | Tian J, Wang M, Shen M, Ma X, Hua Z, Zhang L, Shi J. Highly efficient and selective CO2 electro-reduction to HCOOH on Sn particle-decorated polymeric carbon nitride[J]. ChemSusChem, 2020, 13:6442-6448. |
[30] |
Ren X, Ren Z, Li Q, Wen W, Li X, Chen Y, Xie L, Zhang L, Zhu D, Gao B, Chu P K, Huo K. Tailored plum pudding-like Co2P/Sn encapsulated with carbon nanobox shell as superior anode materials for high-performance sodium-ion capacitors[J]. Adv. Energy Mater., 2019, 9:1900091.
doi: 10.1002/aenm.v9.16 URL |
[31] |
Kuang X, Liu T, Zeng W, Peng X, Wang Z. Hydrothermal synjournal and characterization of novel Sn2O3 hierarchical nanostructures[J]. Mater. Lett., 2016, 165:235-238.
doi: 10.1016/j.matlet.2015.10.142 URL |
[32] |
Qian Y, An T, Birgersson K E, Liu Z, Zhao D. Web-like interconnected carbon networks from NaCl-assisted pyrolysis of ZIF-8 for highly efficient oxygen reduction catalysis[J]. Small, 2018, 14:1704169.
doi: 10.1002/smll.v14.16 URL |
[33] |
Wang H, Maiyalagan T, Wang X. Review on recent pro-gress in nitrogen-doped graphene: synjournal, characterization, and its potential applications[J]. ACS Catal., 2012, 2:781-794.
doi: 10.1021/cs200652y URL |
[34] | Liu S, Pang F, Zhang Q, Guo R, Wang Z, Wang Y, Zhang W, Ou J. Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range[J]. Appl. Mater. Today, 2018, 13:135-143. |
[35] |
Niu Y, Teng X, Gong S, Chen Z. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries[J]. J. Mater. Chem. A, 2020, 8:13725-13734.
doi: 10.1039/D0TA03288C URL |
[36] | Zhang Y, Deng Y P, Wang J, Jiang Y, Cui G, Shui L, Yu A, Wang X, Chen Z. Recent progress on flexible Zn-air batteries[J]. Energy Storage Mater., 2021, 35:538-549. |
[37] |
Urbain F, Tang P, Carretero N M, Andreu T, Gerling L G, Voz C, Arbiol J, Morante J R. A prototype reactor for highly selective solar-driven CO2 reduction to synjournal gas using nanosized earth-abundant catalysts and silicon photovoltaics[J]. Energy Environ. Sci., 2017, 10:2256-2266.
doi: 10.1039/C7EE01747B URL |
[1] | 张俊明, 张小杰, 陈瑶, 房英健, 樊友军, 贾建峰. 低共熔溶剂辅助合成新型的网状纳米结构用于加速甲酸电氧化[J]. 电化学(中英文), 2023, 29(5): 2206231-. |
[2] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[3] | 江恒, 范镜敏,郑明森,董全峰. Co3(HCOO)6@rGO 作为锂离子电池负极材料的研究[J]. 电化学(中英文), 2018, 24(3): 207-215. |
[4] | 孙雍荣,杜春雨,韩国康,王雅静,高云智,尹鸽平. 可见光诱导提升Pt/g-C3N4纳米片甲酸氧化性能的研究[J]. 电化学(中英文), 2018, 24(3): 262-269. |
[5] | 张媛媛,易清风,左葛琨琨,邹涛,刘小平,周秀林. 铅修饰的纳米多孔铂催化剂对甲酸氧化的电活性[J]. 电化学(中英文), 2018, 24(3): 270-278. |
[6] | 林晓东,陈杜宏,田中群. 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学(中英文), 2016, 22(6): 570-576. |
[7] | 黄龙,詹梅,王宇成,林燕芬,刘硕,袁婷,杨辉,孙世刚. 碳纸负载高指数晶面铂纳米粒子的制备及其在直接甲酸燃料电池中的催化性能研究[J]. 电化学(中英文), 2016, 22(2): 123-128. |
[8] | 王龙龙, 曹晓璐, 王亚骏, 平金豪, 李巧霞. Pd-Sb/C复合纳米催化剂对甲酸电催化氧化的性能研究[J]. 电化学(中英文), 2015, 21(4): 368-374. |
[9] | 徐杰,江道传,梅东,何政达,陈艳霞*. Pt电极上甲酸电催化氧化机理研究进展[J]. 电化学(中英文), 2014, 20(4): 333-342. |
[10] | 蒋昆,王晔,林涛,蔡文斌*. Pd-Cu/C上甲酸根电催化氧化及其去合金化效应[J]. 电化学(中英文), 2014, 20(4): 343-348. |
[11] | 杨防祖*,岳俊培,田中群,周绍民. 脉冲电沉积Pd-Ni合金纳米颗粒及其甲酸电催化氧化[J]. 电化学(中英文), 2014, 20(1): 5-11. |
[12] | 武海滨, 张瑞中, 陈卫. PdCu合金纳米晶体的制备和电催化活性研究[J]. 电化学(中英文), 2013, 19(2): 115-119. |
[13] | 黄洁, 周志有, 宋洋, 康雄武, 刘珂, 周万城, 陈少伟. 碳纳米粒子支撑的钯纳米催化剂在甲酸氧化中的电催化活性[J]. 电化学(中英文), 2012, 18(6): 508-514. |
[14] | 任明军, 邹亮亮, 陈举, 袁婷, 黄庆红, 张海峰, 杨辉, 封松林. Pd/Ni异结构纳米催化剂的制备及其对甲酸氧化的电催化[J]. 电化学(中英文), 2012, 18(6): 515-520. |
[15] | 陆君涛, 肖丽, 王得丽, 孙玉宝, 索艳格, 庄林. “性质-活性关系”对催化剂研究的方法论意义[J]. 电化学(中英文), 2012, 18(3): 215-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||