[1] Yu X W, Pickup P G. Recent advances in Direct Formic Acid Fuel Cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.[2] Tammam R H, Saleh M M. Electrocatalytic oxidation of formic acid on nano/micro fibers of poly(p-anisdine) modified platinum electrode[J]. Journal of Power Sources, 2014, 246: 178-183.[3] Bertin E, Garbarino S, Guay D, et al. Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation[J]. Journal of Power Sources, 2013, 225: 323-329.[4] El-Nagar G A, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles-nickel oxide nanoparticles binary catalysts[J]. Electrochimica Acta, 2013, 94: 62-71.[5] Waszczuk P, Barnard T M, Rice C, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid[J]. Electrochemistry Communications, 2002, 4(7): 599-603.[6] Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2003, 115(2): 229-235.[7] Zhu Y, Kang Y Y, Zou Z Q, et al. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid[J]. Electrochemistry Communications, 2008, 10(5): 802-805.[8] Wang J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8366-8372.[9] Lu L, Li H Z, Hong Y J, et al. Improvement of electrocatalytic performance of carbon supported Pd anodic catalyst in direct formic acid fuel cell by ethylenediamine-tetramethylene phosphonic acid[J]. Journal of Power Sources, 2012, 210: 154-157.[10] Ren M J, Chen J, Li Y, et al. Lattice contracted Pd-hollow nanocrystals: Synthesis, structure and electrocatalysis for formic acid oxidation[J]. Journal of Power Sources, 2014, 246: 32-38.[11] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879.[12] Miyake H, Okada T, Osawa G S M. Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3662-3669.[13] Yu X W, Pickup P G. Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation[J]. Electrochemistry Communications, 2009, 11(10): 2012-2014.[14] Lee J K, Jeon H, Uhm S, et al. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells[J]. Electrochimica Acta, 2008, 53(21): 6089-6092.[15] Peng B, Wang J Y, Zhang H X, et al. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid[J]. Electrochemistry Communications, 2009, 11(4): 831-833.[16] Haan J L, Stafford K M, Morgan R D, et al. Performance of the direct formic acid fuel cell with electrochemically modified palladium-antimony anode catalyst[J]. Electrochimica Acta, 2010, 55(7): 2477-2481.[17] Yu X W, Pickup P G. Deactivation resistant PdSb/C catalysts for direct formic acid fuel cells[J]. Electrochemistry Communications, 2010, 12(6): 800-803.[18] Zhou W J, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid[J]. The Journal of Physical Chemistry C, 2008, 112(10): 3789-3793.[19] Hu S, Scudiero L, Ha S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface[J]. Electrochimica Acta, 2012, 83: 354-358.[20] Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1001-1006.[21] Zhang J T, Qiu C C, Ma H Y, et al. Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13970-13975. |