[1] Capon A, Parsons R. Oxidation of formic-acid at noble-metal electrodes. 1. Review of previews work[J]. Journal of Electroanalytical Chemistry, 1973, 44(1): 1-7.[2] Feliu J M, Herrero E. Fuel cell electrocatalysis//[M] Vielstich W, Lamm A, Gasteiger H A. (Eds.), Handbook of fuel cells: Fundamentals, technology, applications, chichester. John Wiley and Sons Ltd., 2003: 625.[3] Zhang Z B, Xu J, Kang J, et al. Role of bridge-bonded formate in formic acid dehydration to CO at Pt electrode: Electrochemial in-situ infrared spectroscopic study[J]. Chinese Journal of Chemical Physics, 2013, 26(4): 471-476.[4] Breiter M W. A study of intermediates adsobed on platinized-platinum during steady-state oxidation of methanol formic acid and formaldehyde[J]. Journal of Electroanalytical Chemistry, 1967, 14(4): 407-413.[5] Parsons R, VanderNoot T. The oxidation of small organic molecules. A survey of recent fuel cell related research[J]. Journal of Electroanalytical Chemistry, 1988, 257(1/2): 9-45.[6] Bockris J O M, Conway B E, White R E(Eds.). Modern aspects of electrochemistry[M]. New York: Kluwer Adcademic/Plenum Publishers, 1992: 97-263.[7] Jarvi T D, Stuve E M. Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces//[C]. Lipkowski J, Ross P N (Eds.), Electrocatalysis, New York: Wiley-VCH, 1998: 75.[8] Sun S G. Studying electrocatalytic oxidation of small organic molecules with in-situ infrared spectroscopy//[C]. Lipkowski J, Ross P N (Eds.), Electrocatalysis, New York: Wiley-VCH, 1998: 243-291.[9] Hamnett A. Accomplishments and challenges[M]. New York: Marcel Dekker Inc., 1999: 843-883[10] Herrero E, Feliu J. Electrocatalysis: interfacial kinetics and mass transport//[C]. Bard A J, Stratmann M (Eds.), Encyclopedia of Electrochemistry, Weinheim. Germany: Wiley-VCH, 2003: 443-465.[11] Waszczuk P, Crown A, Mitrovski S, et al. Electrocatalysis//[C]. Vielstich W, Lamm A, Gasteiger H A. (Eds.), Handbook of fuel cells: Fundamentals, technology, applications, Chichester, UK, John Wiley & Sons, 2003: 635-651.[12] Neurock M, Janik M, Wieckowski A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt[J]. Faraday Discussions, 2009, 140: 363-378.[13] Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.[14] Batista B C, Varela H. Open circuit interaction of formic acid with oxidized Pt surfaces: Experiments, modeling, and simulations[J]. Journal of Physical Chemistry C, 2010, 114(43): 18494-18500.[15] Gao W, Keith J A, Anton J, et al. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111)[J]. Journal of the American Chemical Society, 2010, 132(51): 18377-18385.[16] Hartnig C, Grimminger J, Spohr E. Adsorption of formic acid on Pt(111) in the presence of water[J]. Journal of Electroanalytical Chemistry, 2007, 607(1/2): 133-139.[17] Cuesta A, Cabello G, Gutierrez C, et al. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20091-20095.[18] Grozovski V, Vidal-Iglesias F J, Herrero E, et al. Adsorption of formate and its role asintermediate in formic acid oxidation on platinum electrodes[J]. Chemphyschem, 2011, 12(9): 1641-1644.[19] Chen Y X, Heinen M, Jusys Z, et al. Bridge-bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode?[J]. Langmuir, 2006, 22(25): 10399-10408.[20] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition, 2006, 45(6): 981-985.[21] Chen Y X, Heinen M, Jusys Z, et al. Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation[J]. Chemphyschem, 2007, 8(3): 380-385.[22] Samjeske G, Miki A, Ye S, et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: A time-resolved surface-enhanced infrared study[J]. Journal of Physical Chemistry B, 2005, 109(49):23509-23516.[23] Samjeske G, Osawa M. Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time-resolved IR spectroscopy[J]. Angewandte Chemie International Edition, 2005, 44(35): 5694-5698.[24] Samjeske G, Miki A, Ye S, et al. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry B, 2006, 110(33): 16559-16566.[25] Mukouyama Y, Kikuchi M, Samjeske G, et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: A mathematical modeling and simulation[J]. Journal of Physical Chemistry B, 2006, 110(24): 11912-11917.[26] Osawa M, Komatsu K-i, Samjeske G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie International Edition, 2011, 50(5): 1159-1163.[27] Chen Y X, Ye S, Heinen M, et al. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.[28] Corrigan D S, Krauskopf E K, Rice L M, et al. Adsorption of acetic-acid at platinum and gold electrodes - a combined infrared spectroscopic and radiotracer study[J]. Journal of Physical Chemistry, 1988, 92(6): 1596-1601.[29] Kunimatsu K, Kita H. Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode Part II. Role of the linear CO (a) derived from methanol and formic acid in the electrocatalytic oxidation of CH3OH and HCOOH[J]. Journal of Electroanalytical Chemistry, 1987, 218(1/2): 155-172.[30] Sun S G, Lin Y, Li N H, et al. Kinetics of dissociative adsorption of formic-acid on Pt(100), Pt(610), Pt(210) and Pt(110) single-crystal electrodes in perchloric-acid solutions[J]. Journal of Electroanalytical Chemistry, 1994, 370(1/2): 273-280.[31] Iwasita T, Xia X H, Herrero E, et al. Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy[J]. Langmuir, 1996, 12(17): 4260-4265.[32] Koper M T M, Lai S C S, Herrero E. Mechanisms of the oxidation of carbon monoxide and small organic molecules at metal electrodes//[C] Koper M T M (Ed.) Fuel cell catalysis: A surface science approach, Hoboken, New Jersey: John Wiley & Sons, inc., 2009: 159-208.[33] Clavilier J, Parsons R, Durand R, et al. Formic-acid oxidation single-crystal platinum-electrodes - comparison with polycrystalline platinum[J]. Journal of Electroanalytical Chemistry, 1981, 124(1/2): 321-326.[34] Lamy C, Leger J M, Clavilier J, et al. Structural effects in electrocatalysis-a comparitive study of the oxixation of CO, HCOOH and CH3OH on single crystal Pt electrodes[J]. Journal of Electroanalytical Chemistry, 1983, 150(1/2): 71-77.[35] Adzic R R, O'Grady W E, Srinivasan S. Oxidation of HCOOH on (100), (110) and (111) single crystal platinum electrodes[J]. Surface Science, 1980, 94(2/3): L191-L194.[36] Macia M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified stepped electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 500(1/2): 498-509.[37] Macia M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes[J]. Electrochemistry Communications, 1999, 1(2): 87-89.[38] Smith S P E, Ben-Dor K F, Abruna H D. Poison formation upon the dissociative adsorption of formic acid on bismuth-modified stepped platinum electrodes[J]. Langmuir, 2000, 16(2): 787-794.[39] Grozovski V, Climent V, Herrero E, et al. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces[J]. Physical Chemistry Chemical Physics, 2010, 12(31): 8822-8831.[40] Grozovski V, Climent V, Herrero E, et al. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps[J]. Chemphyschem, 2009, 10(11): 1922-1926.[41] Xu J, Mei D, Yuan D F, et al. A revisit to the role of bridge-adsorbed formate in the electrocatalytic oxidation of formic acid at Pt electrodes[J]. Chinese Journal of Chemical Physics, 2013, 26(3): 321-328.[42] Willsau J, Heitbaum J. Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS[J]. Electrochimica Acta, 1986, 31(8): 943-948.[43] Wilhelm S, Iwasita T, Vielstich W. COH and CO as adsorbed intermediates during methanol oxidation on platinum[J]. Journal of Electroanalytical Chemistry, 1987, 238(1/2): 383-391.[44] Sun S G, Clavilier J, Bewick A. The mechanism of electrocatalytic oxidation of formic-acid on Pt(100) and Pt(111) in sulfuric-acid solution - an EMIRS study[J]. Journal of Electroanalytical Chemistry, 1988, 240(1/2): 147-159.[45] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.[46] Falconer J L, Madix R J. Kinetics and mechanism of autocatalytic decomposition of HCOOH on clean Ni(110)[J]. Surface Science, 1974, 46(2): 473-504.[47] Sharpe R G, Bowker M. Kinetic models of surface explosions[J]. Journal of Physics-Condensed Matter, 1995, 7(32): 6379-6392.[48] Xu J, Yuan D F, Yang F, et al. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode[J]. Physical Chemistry Chemical Physics, 2013, 15(12): 4367-4376.[49] Joo J, Uchida T, Cuesta A, et al. Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013, 135(27): 9991-9994.[50] Bockris J O M, Reddy A K N, Gamboa-Aldeco M. Modern electrochemistry[M]. Kluwer Academic: Plenum Publishers, 2001: 450.[51] Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.[52] Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: An application to real-time monitoring of electrocatalytic reactions[J]. Chemical Communications, 2002, (14): 1500-1501. |