[1] |
Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463.
|
[2] |
Yang Z F, Wang J, Cui C F, Jin Y, Zhang G, Zhou H H, Qian W Z. High power density & energy density Li-ion battery with aluminum foam enhanced electrode: Fabrication and simulation[J]. J. Power Sources, 2022, 524: 230977.
doi: 10.1016/j.jpowsour.2022.230977
URL
|
[3] |
Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012, 41(2): 797-828.
doi: 10.1039/c1cs15060j
pmid: 21779609
|
[4] |
Zhong C, Deng Y D, Hu W B, Qiao J L, Zhang L, Zhang J J. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44(21): 7484-7539.
doi: 10.1039/c5cs00303b
pmid: 26050756
|
[5] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7(11): 845-854.
doi: 10.1038/nmat2297
pmid: 18956000
|
[6] |
Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
doi: 10.1126/science.1200770
pmid: 21566159
|
[7] |
Yang Z F, Tian J R, Yin Z F, Cui C J, Qian W Z, Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon, 2019, 141: 467-480.
doi: 10.1016/j.carbon.2018.10.010
URL
|
[8] |
Zhang S T, Yang Z F, Cui C J, Chen X, Yu Y T, Qian W Z, Jin Y. Ultrafast nonvolatile ionic liquids-based supercapacitors with Al foam-enhanced carbon electrode[J]. ACS Appl. Mater. Interfaces, 2021, 13(45): 53904-53914.
doi: 10.1021/acsami.1c15754
URL
|
[9] |
Tian J R, Cui C J, Xie Q, Qian W Z, Xue C, Miao Y H, Jin Y, Zhang G, Guo B H. EMIMBF4-GBL binary electrolyte working at -70 oC and 3.7 V for a high performance graphene-based capacitor[J]. J. Mater. Chem. A, 2018, 6(8): 3593-3601.
doi: 10.1039/C7TA10474J
URL
|
[10] |
Zhao Y, Liu B Z, Yi Y Y, Lian X Y, Wang M L, Li S, Yang X Z, Sun J Y. An anode-free potassium-metal battery enabled by a directly grown graphene-modulated aluminum current collector[J]. Adv. Mater., 2022, 34(29): 2202902.
doi: 10.1002/adma.202202902
URL
|
[11] |
Fan Z J, Yan J, Wei T, Zhi L J, Ning G Q, Li T Y, Wei F. Asymmetric supercapacitors based on graphene/MnO2and activated carbon nanofiber electrodes with high power and energy density[J]. Adv. Funct. Mater., 2011, 21(12): 2366-2375.
doi: 10.1002/adfm.201100058
URL
|
[12] |
Jiang D E, Jin Z H, Henderson D, Wu J Z. Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor[J]. J. Phys. Chem. Lett., 2012, 3(13): 1727-1731.
doi: 10.1021/jz3004624
URL
|
[13] |
Yang D F, Bock C. Laser reduced graphene for supercapacitor applications[J]. J. Power Sources, 2017, 337: 73-81.
doi: 10.1016/j.jpowsour.2016.10.108
URL
|
[14] |
Yang Z F, Tian J R, Ye Z Z, Jin Y, Cui C J, Xie Q, Wang J, Zhang G, Dong Z Y, Miao Y H, Yu X, Qian W Z, Wei F. High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode: Fabrication and simulation[J]. Energy Stor. Mater., 2020, 33: 18-25.
|
[15] |
Li J, Wang N, Tian J R, Qian W Z, Chu W. Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V[J]. Adv. Funct. Mater., 2018, 28(51): 1806153.
doi: 10.1002/adfm.201806153
URL
|
[16] |
Li J, Zhou Y A, Tian J R, Peng L L, Deng J, Wang N, Qian W Z, Chu W. A nitrogen-doped mesopore-dominated carbon electrode allied with anti-freezing EMIBF4-GBL electrolyte for superior low-temperature supercapacitors[J]. J. Mater. Chem. A, 2020, 8(20): 10386-10394.
doi: 10.1039/D0TA02677H
URL
|
[17] |
Tian J R, Cui C J, Zheng C, Qian W Z. Mesoporous tubular graphene electrode for high performance supercapacitor[J]. Chin. Chem. Lett., 2018, 29(4): 599-602.
doi: 10.1016/j.cclet.2018.01.027
URL
|
[18] |
Teuber M, Strautmann M, Drillkens J, Sauer D U. Lifetime and performance assessment of commercial electric double-layer capacitors based on cover layer formation[J]. ACS Appl. Mater. & Interfaces, 2019, 11(20): 18313-18322.
|
[19] |
Ye Z Z, Chen X Q, Wang J, Li B F, Cui C J, Zhang G, Qian L M, Jin Y, Qian W Z. Evaluation of aging performance under high temperature of ionic liquid-based pouch supercapacitor[J]. CIESC Journal, 2021, 72(12): 6351-6360.
|
[20] |
Yin Z F, Shen B Y, Cui C J, Chen H, Duoni, Wang J, Qian W Z, Zhao L. High-performance graphene/carbon nanotube-based adsorbents for treating diluted O-cresol in water in a pilot-plant scale demo[J]. ACS Appl. Mater. & Interfaces, 2021, 13(36): 43266-43272.
|
[21] |
He J X, Zhao S Y, Lian Y P, Zhou M J, Wang L D, Ding B, Cui S Z. Graphene-doped carbon/Fe3O4 porous nano-fibers with hierarchical band construction as high-performance anodes for lithium-ion batteries[J]. Electrochim. Acta, 2017, 229: 306-315.
doi: 10.1016/j.electacta.2017.01.092
URL
|
[22] |
Izadi-Najafabadi A, Yamada T, Futaba D N, Hatori H, Iijima S, Hata K. Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes[J]. Electrochem. Commun., 2010, 12(12): 1678-1681.
doi: 10.1016/j.elecom.2010.09.020
URL
|
[23] |
Fernandez A P R, Périgo E A, Faria R N. Analytical expressions for electrochemical supercapacitor with potential dependent capacitance[J]. J. Energy Stor., 2021, 43: 103156.
|
[24] |
Yang Y, Fei H L, Ruan G D, Xiang C S, Tour J M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Adv. Mater., 2014, 26(48): 8163-8168.
doi: 10.1002/adma.201402847
URL
|
[25] |
Ayadi M, Briat O, Lallemand R, Eddahech A, German R, Coquery G, Vinassa J M. Description of supercapacitor performance degradation rate during thermal cycling under constant voltage aging test[J]. Microelectron. Reliab., 2014, 54(9-10): 1944-1948.
doi: 10.1016/j.microrel.2014.07.150
URL
|
[27] |
El Brouji H, Briat O, Vinassa J M, Bertrand N, Woirgard E. Comparison between changes of ultracapacitors model parameters during calendar life and power cycling aging tests[J]. Microelectron. Reliab., 2008, 48(8): 1473-1478.
doi: 10.1016/j.microrel.2008.07.022
URL
|
[28] |
Masarapu C, Zeng H F, Hung K H, Wei B. Effect of temperature on the capacitance of carbon nanotube supercapacitors[J]. ACS Nano, 2009, 3(8): 2199-2206.
doi: 10.1021/nn900500n
pmid: 19583250
|
[29] |
Hastak R S, Sivaraman P, Potphode D D, Shashidhara K, Samui A B. All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application[J]. Electrochim. Acta, 2012, 59: 296-303.
doi: 10.1016/j.electacta.2011.10.102
URL
|
[30] |
Poonam, Vyas M, Jangid D K, Rohan R, Pareek K. Investigation of supercapacitor cyclic degradation through impedance spectroscopy and randles circuit model[J]. Energy Stor., 2022, 4(5): e355.
|
[31] |
Saha P, Dey S, Khanra M. Second-life applications of supercapacitors: Effective capacitance prognosis and aging[J]. J. Power Sources, 2021, 496: 229824.
doi: 10.1016/j.jpowsour.2021.229824
URL
|
[32] |
Jossen A. Fundamentals of battery dynamics[J]. J. Power Sources, 2006, 154(2): 530-538.
doi: 10.1016/j.jpowsour.2005.10.041
URL
|
[33] |
Yang C Z, Li C Y V, Li F J, Chan K Y. Complex imped-ance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons[J]. J. Electrochem. Soc., 2013, 160(4): H271-H278.
doi: 10.1149/2.016306jes
URL
|
[34] |
Li J, Xu Z, Zhang Z A. In situ combined analysis of gases and electrochemical signals of an activated carbon-based supercapacitor at 2.7-4 V[J]. RSC Adv., 2018, 8(56): 32188-32192.
doi: 10.1039/C8RA06568C
URL
|
[35] |
Kim H S, Kim Y H, Roh K C, Kim K B. Sandwich-type ordered mesoporous carbon/graphene nanocomposites derived from ionic liquid[J]. Nano Res., 2016, 9(9): 2696-2706.
doi: 10.1007/s12274-016-1158-y
URL
|