[1] |
Liu S(刘双), Shao L Y(邵涟漪), Zhang X J(张雪静), Tao Z L(陶占良), Chen J(陈军). Advances in electrode materials for aqueous rechargeable sodium-ion batteries[J]. Acta Phys. - Chim. Sin.(物理化学学报), 2018, 34(6): 581-97.
|
[2] |
Ge X F, Liu S H, Qiao M, Du Y C, Li Y F, Bao J C, Zhou X S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers[J]. Angew. Chem. Int. Ed., 2019, 58(41): 14578-14583.
doi: 10.1002/anie.v58.41
URL
|
[3] |
Kudakwashe C, Grietus M, Dmitri L D, Notten P H L. Sodium-ion battery materials and electrochemical properties reviewed[J]. Adv. Energy Mater., 2018, 8(16): 1800079.
doi: 10.1002/aenm.v8.16
URL
|
[4] |
Yi Z Y, Xu J Y, Xu Z H, Zhang M, He Y N, Bao J C, Zhou X S. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. J. Energy Chem., 2021, 60: 241-248.
doi: 10.1016/j.jechem.2021.01.022
URL
|
[5] |
Cao Y(曹翊), Wang Y G(王永刚), Wang Q(王青), Zhang Z Y(张兆勇), Che Y(车勇), Xia Y Y(夏永姚), Dai X(戴翔). Development of aqueous sodium ion battery[J]. Energy Storage Sci. Technol.(储能科学与技术), 2016, 5(3): 317-323.
|
[6] |
Zhang Z Z, Du Y C, Wang Q C, Xu J Y, Zhou Y N, Bao J C, Shen J, Zhou X S. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries[J]. Angew. Chem. Int. Ed., 2020, 59(40): 17504-17510.
doi: 10.1002/anie.v59.40
URL
|
[7] |
Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nat. Mater., 2016, 16(1): 45-56.
doi: 10.1038/nmat4777
pmid: 27994251
|
[8] |
Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.
doi: 10.1002/aenm.201200065
URL
|
[9] |
Bin D, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Progress in aqueous rechargeable sodium-ion batteries[J]. Adv. Energy Mater., 2018, 8(17): 1703008.
doi: 10.1002/aenm.v8.17
URL
|
[10] |
Peljo P, Girault H H. Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception[J]. Energy Environ. Sci., 2018, 11(9): 2306-2309.
doi: 10.1039/C8EE01286E
URL
|
[11] |
Ovshinsky S R, Fetcenko M A, Ross J. A nickel metal hydride battery for electric vehicles[J]. Science, 1993, 260(5105): 176-181.
pmid: 17807176
|
[12] |
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943
doi: 10.1126/science.aab1595
URL
|
[13] |
Suo L M, Borodin O, Wang Y S, Rong X H, Sun W, Fan X L, Xu S Y, Schroeder M A, Cresce A V, Wang F, Yang C Y, Hu Y S, Xu K, Wang C S. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189.
doi: 10.1002/aenm.v7.21
URL
|
[14] |
Leonard D P, Wei Z X, Chen G, Du F, Ji X. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Lett., 2018, 3(2): 373-374.
doi: 10.1021/acsenergylett.8b00009
|
[15] |
Mende-M T, Li Z J, Salanne M. Computational screening of the physical properties of water-in-salt electrolytes[J]. Batteries Supercaps, 2021, 4(4): 646-652.
doi: 10.1002/batt.v4.4
URL
|
[16] |
Lukatskaya M R, Feldblyum J I, Mackanic D G, Lissel F, Michels D L, Cui Y, Bao Z A. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy Environ. Sci., 2018, 11(10): 2876-2883.
doi: 10.1039/C8EE00833G
URL
|
[17] |
Han J, Zhang H, Varzi A, Passerini S. Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries[J]. ChemSusChem, 2018, 11(21): 3704-3707.
doi: 10.1002/cssc.v11.21
URL
|
[18] |
Liu Z X, Pang G, Dong S Y, Zhang Y D, Mi C H, Zhang X G. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochim. Acta, 2019, 311: 1-7.
doi: 10.1016/j.electacta.2019.04.130
URL
|
[19] |
Cai R(蔡然), Yang H W(杨宏伟), He J S(和劲松), Zhu W P(祝万鹏). Research progress on hydrogen bond structure in liquide water via raman spectroscopy[J]. Environ. Protec. Chem. Ind.(化工环保), 2010, 30(6): 492-495.
|
[20] |
Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos J P, Kumagai N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochim. Acta, 2008, 53(7): 3084-3093.
doi: 10.1016/j.electacta.2007.11.038
URL
|
[21] |
Zhang Y, Hu Y, Li S, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. J. Power So-urces, 2011, 196(22): 9284-9289.
|
[22] |
Xie J, Liang Z, Lu Y C. Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nat. Mater., 2020, 19(9): 1006-1011.
doi: 10.1038/s41563-020-0667-y
URL
|
[23] |
Tongraar A, Liedl K R, Rode B M. Born-oppenheimer ab Initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects[J]. J. Phys. Chem. A, 1998, 102(50): 10340-10347.
doi: 10.1021/jp982270y
URL
|
[24] |
Burikov S A, Dolenko T A, Velikotnyi P A, Sugonyaev A V, Fadeev V V. The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water[J]. Opt. Spectrosc., 2005, 98(2): 235-239.
doi: 10.1134/1.1870066
URL
|
[25] |
Reber D, Figi R, Kühnel R S, Battaglia C. Stability of aqueous electrolytes based on LiFSI and NaFSI[J]. Electrochim. Acta, 2019, 321: 134644.
doi: 10.1016/j.electacta.2019.134644
URL
|
[26] |
Zhang W Y, Jin H X, Du Y Q, Zhang Y J, Wang Z H, Zhang J X. Hierarchical lamellar-structured MnO2@grap-hene for high performance Li, Na and K ion batteries[J]. ChemistrySelect, 2020, 5(40): 12481-61248.
doi: 10.1002/slct.v5.40
URL
|
[27] |
Niu L Y, Yan L J, Lu Z W, Gong Y Y, Chen T Q, Li C, Liu X J, Xu S Q. Tuning electronic structure of δ-MnO2 by the alkali-ion (K, Na, Li) associated manganese vacancies for high-rate supercapacitors[J]. J. Energy Chem., 2021, 56: 245-258.
doi: 10.1016/j.jechem.2020.08.004
URL
|