[1] |
Fang Z H, Wang J, Wu H C, Li Q Q, Fan S S, Wang J P. Progress and challenges of flexible lithium ion batteries[J]. J. Power Sources, 2020,454(1):227932-227948.
doi: 10.1016/j.jpowsour.2020.227932
URL
|
[2] |
Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994,264(5162):1115-1118.
doi: 10.1126/science.264.5162.1115
URL
|
[3] |
Liu Z X, Huang Y, Huang Y, Yang Q, Li X L, Huang Z D, Zhi C Y. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chem. Soc. Rev., 2020,49(1):180-232.
doi: 10.1039/C9CS00131J
URL
|
[4] |
Tron A, Park Y D, Mun J. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability[J]. J. Power Sources, 2016,325(1):360-364.
doi: 10.1016/j.jpowsour.2016.06.049
URL
|
[5] |
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015,350(6263):938-946.
doi: 10.1126/science.aab1595
URL
|
[6] |
Suo L M, Borodin O, Sun W, Fan X L, Yang C Y, Wang F, Gao T, Ma Z H, Schroeder M, von Cresce A, Russell S M, Armand M, Angell A, Xu K, Wang C S. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte[J]. Angew. Chem. Int. Ed., 2016,55(25):7136-7141.
doi: 10.1002/anie.201602397
URL
|
[7] |
Suo L M, Oh D, Lin Y X, Zhuo Z Q, Borodin O, Gao T, Wang F, Kushima A, Wang Z Q, Kim H C, Qi Y, Yang W L, Pan F, Li J, Xu K, Wang C S. How solid-electrolyte interphase forms in aqueous electrolytes[J]. J. Am. Chem. Soc., 2017,139(51):18670-18680.
doi: 10.1021/jacs.7b10688
URL
|
[8] |
Liu Z X, Li H F, Zhu M S, Huang Y, Tang Z J, Pei Z X, Wang Z F, Shi Z C, Liu J, Huang Y, Zhi C Y. Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability[J]. Nano Energy, 2018,44(1):164-173.
doi: 10.1016/j.nanoen.2017.12.006
URL
|
[9] |
Raymond S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis[J]. Science, 1959,130(3377):711.
|
[10] |
Entry J A, Sojka R E, Watwood M, Ross C. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants[J]. Environ. Pollut., 2002,120(2):191-200.
doi: 10.1016/S0269-7491(02)00160-4
URL
|
[11] |
Li H F, Liu Z X, Liang G J, Huang Y, Huan Y, Zhu M S, Pei Z X, Xue Q, Tang Z J, Wang Y K, Li B H, Zhi C Y. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018,12(4):3140-3148.
doi: 10.1021/acsnano.7b09003
URL
|
[12] |
He X, Yan B, Zhang X, Liu Z G, Bresser D, Wang J, Wang R, Cao X, Su Y X, Jia H, Grey C P, Frielinghaus H, Truhlar D G, Winter M, Li J, Paillard E. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries[J]. Nat. Commun., 2018,9(1):5320-5328.
doi: 10.1038/s41467-018-07331-6
URL
|
[13] |
Luo J Y, Chen L J, Zhao Y J, He P, Xia Y Y. The effect of oxygen vacancies on the structure and electrochemistry of LiTi2(PO4)3 for lithium-ion batteries: A combined experimental and theoretical study[J]. J. Power Sources, 2009,194(2):1075-1080.
doi: 10.1016/j.jpowsour.2009.06.050
URL
|