电化学(中英文) ›› 2021, Vol. 27 ›› Issue (2): 144-156. doi: 10.13208/j.electrochem.201241
所属专题: “理论计算模拟”专题文章
收稿日期:
2020-12-31
修回日期:
2021-02-21
出版日期:
2021-04-28
发布日期:
2021-03-12
通讯作者:
吴志鹏,钟传建
E-mail:zpwu@tju.edu.cn;cjzhong@binghamton.edu
Zhi-Peng Wu1,2,3,*(), Chuan-Jian Zhong2,*()
Received:
2020-12-31
Revised:
2021-02-21
Published:
2021-04-28
Online:
2021-03-12
Contact:
Zhi-Peng Wu,Chuan-Jian Zhong
E-mail:zpwu@tju.edu.cn;cjzhong@binghamton.edu
摘要:
质子交换膜燃料电池和直接乙醇燃料电池已成为可持续性清洁能源研究的一个聚焦点。在燃料电池中,氧还原反应和乙醇氧化反应是两个重要的反应,其相关高活性、高稳定性并且廉价的催化剂的研发仍然存在很多问题,极大地制约了燃料电池的大规模商业化应用。其中的挑战主要来自于对纳米催化剂结构和反应机理的有限认识。由于实验表征理论计算的结合,对钯基合金纳米材料电催化剂的研究得到了很大的进展。本文从实验和理论计算两个方面出发,重点讨论了应用于氧还原反应和乙醇氧化反应的钯和钯基电催化剂的结构和反应机理方面的近期研究的一些见解。这些见解对未来催化剂的设计与优化有一定的启发意义。
吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156.
Zhi-Peng Wu, Chuan-Jian Zhong. Pd-Based Electrocatalysts for Oxygen Reduction and Ethanol Oxidation Reactions: Some Recent Insights into Structures and Mechanisms[J]. Journal of Electrochemistry, 2021, 27(2): 144-156.
Figure 4
(A) RDE curves of different PdCu/C catalysts. Insets are the corresponding RMC models featuring different structures; (B) Evolution of the bonding effects, geometric surface area, and retained ORR activity along with the potential cycling numbers for PdCu/400 ℃ catalyst in the in-situ HE-XRD/PEMFC experiment[15, 25]. (color on line)
Figure 6
(A) Map of the first atomic PDF peak for Pd43Sn57 nanoparticle catalyst in operando experiment; (B) Mass distribution of Pd43Sn57 nanoparticle catalyst in the membrane electrode assemble after 70 min operation; (C) Atomic PDFs of Pd43Sn57 nanoparticle catalyst during in-situ fuel cell operation[28]. (color on line)
Figure 7
(A) Plots of the mass activity and specific activity as a function of chemical composition in PtPd/C alloy catalysts; (B) Variation of OH adsorption energy based on PtPd cluster model with composition; (C) The most stable adsorption configurations of OH on different PtPd alloy cluster models[30]. (color on line)
Figure 10
(A) Cyclic voltammetric curves of Pd/C catalyst in pure 0.5 mol·L-1 KOH solution (blank) and in 0.5 mol·L-1 KOH solution with the addition of 0.5 mol·L-1 acetic acid (0.5 mol·L-1 AA); (B) Normalized peak current on the forward sweep of EOR on Pd/C catalyst in 0.5 mol·L-1 KOH solution with increasing concentrations of pure ethanol, ethanol with acetic acid, and ethanol with acetaldehyde[2]. (color on line)
[1] |
Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009,8(4):325-330.
doi: 10.1038/nmat2359 pmid: 19169248 |
[2] |
Wu Z P, Miao B, Hopkins E, Park K, Chen Y F, Jiang H X, Zhang M H, Zhong C J, Wang L C. Poisonous species in complete ethanol oxidation reaction on palladium catalysts[J]. J. Phys. Chem. C, 2019,123(34):20853-20868.
doi: 10.1021/acs.jpcc.9b04229 URL |
[3] |
Wu Z P, Zhang M H, Jiang H X, Zhong C J, Chen Y F, Wang L C. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment[J]. Phys. Chem. Chem. Phys., 2017,19(23):15444-15453.
doi: 10.1039/C7CP01445G URL |
[4] |
Wang K L, Wang F, Zhao Y F, Zhang W Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. J. Energy Chem., 2021,52:251-261.
doi: 10.1016/j.jechem.2020.04.056 URL |
[5] |
Guo J S, Chen R R, Zhu F H, Sun S G, Villullas H M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells[J]. Appl. Catal. B - Environ., 2018,224:602-611.
doi: 10.1016/j.apcatb.2017.10.037 URL |
[6] |
Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
doi: 10.1021/acs.chemrev.5b00462 URL |
[7] |
Jiang K Z, Wang P T, Guo S J, Zhang X, Shen X, Lu G, Su D, Huang X Q. Ordered PdCu-based nanoparticles as bifunctional oxygenreduction and ethanol-oxidation electrocatalysts[J]. Angew. Chem. In. Ed., 2016,55(31):9030-9035.
doi: 10.1002/anie.201603022 URL |
[8] |
Wu Z P, Shan S Y, Zang S Q, Zhong C J. Dynamic core-shell and alloy structures of multimetallic nanomaterials and their catalytic synergies[J]. Acc. Chem. Res., 2020,53(12):2913-2924.
doi: 10.1021/acs.accounts.0c00564 URL |
[9] | Xiao F, Wang Y C, Wu Z P, Chen G Y, Yang F, Zhu S Q, Siddharth K, Kong Z J, Lu A L, Li J C, Zhong C J, Zhou Z Y, Sha M H. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells[J]. Adv. Mater., 2021: 2006292. |
[10] |
Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C , 2018,122(39):22448-22459.
doi: 10.1021/acs.jpcc.8b05812 URL |
[11] | Munoz F, Hua C, Kwong T, Tran L, Nguyen T Q, Haan J L. Palladium-copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell[J]. Appl. Catal. B - Environ., 2015,174:323-328. |
[12] |
Monyoncho E A, Steinmann S N, Michel C, Baranova E A, Woo T K, Sautet P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): Why is it difficult to break the C-C bond?[J]. ACS Catal., 2016,6(8):4894-4906.
doi: 10.1021/acscatal.6b00289 URL |
[13] |
Tang W, Zhang L, Henkelman G. Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction[J]. J. Phys. Chem. Lett. , 2011,2(11):1328-1331.
doi: 10.1021/jz2004717 URL |
[14] |
Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett. , 2017,688:92-97.
doi: 10.1016/j.cplett.2017.09.045 URL |
[15] |
Wu Z P, Shan S Y, Xie Z H, Kang N, Park K, Hopkins E, Yan S, Sharma A, Luo J, Wang J, Petkov V, Wang L C, Zhong C J. Revealing the role of phase structures of bimetallic nanocatalysts in the oxygen reduction reaction[J]. ACS Catal., 2018,8(12):11302-11313.
doi: 10.1021/acscatal.8b03106 URL |
[16] |
Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts[J]. Comput. Mater. Sci. , 2019,156:175-186.
doi: 10.1016/j.commatsci.2018.09.029 URL |
[17] |
Sha Y, Yu T H, Merinov B V, Goddard W A. DFT prediction of oxygen reduction reaction on palladium-copper alloy surfaces[J]. ACS Catal., 2014,4(4):1189-1197.
doi: 10.1021/cs4009623 URL |
[18] |
Petkov V, Maswadeh Y, Vargas J A, Shan S Y, Kareem H, Wu Z P, Luo J, Zhong C J, Shastri S, Kenesei P. Deviations from Vegard's law and evolution of the electrocatalytic activity and stability of Pt-based nanoalloys inside fuel cells by in operando X-ray spectroscopy and total scattering[J]. Nanoscale, 2019,11(12):5512-5525.
doi: 10.1039/C9NR01069F URL |
[19] |
Kong Z, Maswadeh Y, Vargas J A, Kong Z J, Maswadeh Y, Vargas J A, Shan S Y, Wu Z P, Kareem H, Leff A C, Tran D T, Chang F F, Yan S, Nam, S, Zhao X F, Lee J M, Luo J, Shastri S, Yu G, Petkov V, Zhong C J. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. J. Am. Chem. Soc., 2020,142(3):1287-1299.
doi: 10.1021/jacs.9b10239 URL |
[20] |
Wu Z P, Lu X F, Zang S Q, Lou X W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Adv. Funct. Mater., 2020,30(15):1910274.
doi: 10.1002/adfm.v30.15 URL |
[21] |
Wu Z P, Caracciolo D T, Maswadeh Y, Wen J G, Kong Z J, Shan S Y, Vargas J A, Yan S, Hopkins E, Park K, Sharma A, Ren Y, Petkov V, Wang L C, Zhong C J. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts[J]. Nat. Commun., 2021,12(1):859.
doi: 10.1038/s41467-021-21017-6 URL |
[22] |
Wu J F, Shan S Y, Luo J, Joseph P, Petkoy V, Zhong C J. PdCu nanoalloy electrocatalysts in oxygen reduction reaction: role of composition and phase state in catalytic synergy[J]. ACS Appl. Mater. Interfaces, 2015,7(46):25906-25913.
doi: 10.1021/acsami.5b08478 URL |
[23] |
Zhang W, Shan S Y, Luo J, Fisher A, Chen J F, Zhong C J, Zhu J Q, Cheng D J. Origin of enhanced activities for CO oxidation and O2 reaction over composition-optimized Pd50Cu50 nanoalloy catalysts[J]. J. Phys. Chem. C, 2017,121(20):11010-11020.
doi: 10.1021/acs.jpcc.6b10814 URL |
[24] |
Wu J F, Shan S Y, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C J. Composition-structure-activity relationships for palladiumalloyed nanocatalysts in oxygen reduction reaction: An ex-situ/in-situ high energy X-ray diffraction study[J]. ACS Catal., 2015,5(9):5317-5327.
doi: 10.1021/acscatal.5b01608 URL |
[25] |
Maswadeh Y, Shan S Y, Prasai B, Zhao Y G, Xie Z H, Wu Z P, Luo J, Ren Y, Zhong C J, Petkov V. Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd-Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction[J]. J. Mater. Chem. A, 2017,5(16):7355-7365.
doi: 10.1039/C7TA00688H URL |
[26] |
Wang C, Chen D P, Sang X, Unocic R R, Skrabalak S E. Size-dependent disorder-order transformation in the synjournal of monodisperse intermetallic PdCu nanocatalysts[J]. ACS Nano, 2016,10(6):6345-6353.
doi: 10.1021/acsnano.6b02669 URL |
[27] |
Wanjala B N, Fang B, Loukrakpam R, Chen Y S, Engelhard M, Luo J, Yin J, Yang L F, Shan S Y, Zhong C J. Role of metal coordination structures in enhancement of electrocatalytic activity of ternary nanoalloys for oxygen reduction reaction[J]. ACS Catal., 2012,2(5):795-806.
doi: 10.1021/cs300080k URL |
[28] |
Petkov V, Maswadeh Y, Zhao Y G, Lu A L, Cronk H, Chang F F, Shan S Y, Kareem H, Luo J, Zhong C J, Shastri S, Kenesei P. Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando X-ray spectroscopy and total scattering[J]. Nano Energy, 2018,49:209-220.
doi: 10.1016/j.nanoen.2018.04.049 URL |
[29] |
Petkov V, Shastri S, Kim J W, Shan S Y, Luo J, Wu J F, Zhong C J. Application of differential resonant high-energy X-ray diffraction to three-dimensional structure studies of nanosized materials: A case study of Pt-Pd nanoalloy catalysts[J]. Acta Crystallogr. Sect. A, 2018,74(5):553-566.
doi: 10.1107/S2053273318009282 URL |
[30] |
Wu J F, Shan S Y, Cronk H, Chang F F, Kareern H, Zhao Y G, Luo J, Petkov V, Zhong C J. Understanding composition-dependent synergy of PtPd alloy nanoparticles in electrocatalytic oxygen reduction reaction[J]. J. Phys. Chem. C, 2017,121(26):14128-14136.
doi: 10.1021/acs.jpcc.7b03043 URL |
[31] |
Zhou Z Y, Wang Q, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55(27):7995-7999.
doi: 10.1016/j.electacta.2010.02.071 URL |
[32] |
Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
doi: 10.1021/cs401198t URL |
[33] |
Chen H M, Xing Z L, Zhu S Q, Zhang L L, Chang Q W, Huang J L, Cai W B, Kang N, Zhong C J, Shao M H. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation[J]. J. Power Sources, 2016,321:264-269.
doi: 10.1016/j.jpowsour.2016.04.072 URL |
[34] |
Liang Z X, Zhao T S, Xu J B, Zhu L D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim. Acta, 2009,54(8):2203-2208.
doi: 10.1016/j.electacta.2008.10.034 URL |
[35] |
Wang H F, Liu Z P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network[J]. J. Am. Chem. Soc., 2008,130(33):10996-11004.
doi: 10.1021/ja801648h URL |
[36] |
Wang E D, Xu J B, Zhao T S. Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces[J]. J. Phys. Chem. C, 2010,114(23):10489-10497.
doi: 10.1021/jp101244t URL |
[37] |
Yin J, Shan S Y, Ng M S, Yang L F, Mott D, Fang W Q, Kang N, Luo J, Zhong C J. Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts[J]. Langmuir, 2013,29(29):9249-9258.
doi: 10.1021/la401839m URL |
[38] |
Liao Y, Yu G, Zhang Y, Guo T T, Chang F F, Zhong C J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction[J]. J. Phys. Chem. C, 2016,120(19):10476-10484.
doi: 10.1021/acs.jpcc.6b02630 URL |
[39] |
Lu A L, Wu Z P, Chen B H, Peng D L, Yan S, Shan S Y, Skeete Z, Chang F F, Chen Y Z, Zheng H F, Zeng D Q, Yang L F, Sharma A J, Luo J, Wang L C, Petkov V, Zhong C J. From a Au-rich core/PtNi-rich shell to a Ni-rich core/PtAu-rich shell: an effective thermochemical pathway to nanoengineering catalysts for fuel cells[J]. J. Mater. Chem. A, 2018,6(12):5143-5155.
doi: 10.1039/C8TA00025E URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[9] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[10] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[11] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[12] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[15] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||