[1] |
Coleman E J, Co A C . The complex inhibiting role of surface oxide in the oxygen reduction reaction[J]. ACS Catalysis, 2015,5(12):7299-7311.
doi: 10.1021/acscatal.5b02122
URL
|
[2] |
Adzic R R, Tripkovic A V, O'Grady W E . Structural effects in electrocatalysis[J]. Nature, 1982,296(5853):137-138.
doi: 10.1038/296137a0
URL
|
[3] |
Wang W, Zhang J, Wang F F , et al. Mobility and reactivity of oxygen adspecies on platinum surface[J]. Journal of the American Chemical Society, 2016,138(29):9057-9060.
doi: 10.1021/jacs.6b05259
URL
|
[4] |
Zhou X S, Dong Z R, Zhang H M , et al. Self-assembly of a Rh(I) complex on Au(111) surfaces and its electrocatalytic activity toward the hydrogen evolution reaction[J]. Langmuir, 2007,23(12):6819-6826.
doi: 10.1021/la062949q
URL
|
[5] |
Li K, Peng B S, Peng T Y . Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016,6(11):7485-7527.
doi: 10.1021/acscatal.6b02089
URL
|
[6] |
Sun S G( 孙世刚), Chen S L( 陈胜利 ). Electrocatalysis[M]. Chemical Industry Press Co., Ltd.( 化学工业出版社), 2016.
|
[7] |
Yang J H, Cooper J K, Toma F M , et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes[J]. Nature Materials, 2016,16(3):335-341.
|
[8] |
Merki D, Vrubel H, Rovelli L , et al. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chemical Science, 2012,3(8):2515-2525.
|
[9] |
Yin Y, Han J C, Zhang Y M , et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016,138(25):7965-7972.
|
[10] |
Li G Q, Zhang D, Qiao Q , et al. All the catalytic active sites of MoS2 for hydrogen evolution[J]. Journal of the American Chemical Society, 2016,138(51):16632-16638.
|
[11] |
Bard A J, Faulkner L R . Electrochemical methods: Fundamentals and applications(2nd Ed.)[M]. New York, Wiley, 2001.
|
[12] |
Jiang Y F, Jiang B, Yang L K , et al. Determination of adsorbed species of hypophosphite electrooxidation on Ni electrode by in situ infrared with shell-isolated nano-particle-enhanced Raman spectroscopy[J]. Electrochemistry Communications, 2014,48:5-9.
|
[13] |
Li C Y, Chen S Y, Zheng Y L , et al. In-situ electrochemical shell-isolated Ag nanoparticles-enhanced Raman spectroscopy study of adenine adsorption on smooth Ag electrodes[J]. Electrochimica Acta, 2016,199:388-393.
|
[14] |
Li J F, Zhang Y J, Rudnev A V , et al. Electrochemical shell-isolated nanoparticle-enhanced raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015,137(6):2400-2408.
doi: 10.1021/ja513263j
URL
|
[15] |
Chen C H, Meadows K E, Cuharuc A , et al. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes[J]. Physical Chemistry Chemical Physics, 2014,16(34):18545-18552.
doi: 10.1039/c4cp01511h
URL
|
[16] |
Zuliani C, Walsh D A, Keyes T E , et al. Formation and growth of oxide layers at platinum and gold nano- and microelectrodes[J]. Analytical Chemistry, 2010,82(17):7135-7140.
|
[17] |
Su Y Z, Yan J W, Li M G , et al. Adsorption of solvent cations on Au(111) and Au(100) in alkylimidazolium-based ionic liquids-worm-like versus micelle-like structures[J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2012,226(9/10):979-994.
|
[18] |
Tang Y G, Yan J W, Zhu F , et al. Comparative electrochemical scanning tunneling microscopy study of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100): a potential-induced structural transition[J]. Langmuir, 2011,27(3):943-947.
|
[19] |
Rodríguez-López J, Alpuche-Avilés M A, Bard A J . Interrogation of surfaces for the quantification of adsorbed species on electrodes: Oxygen on gold and platinum in neutral media[J]. Journal of the American Chemical Society, 2008,130(50):16985-16995.
|
[20] |
Liang Z X, Ahn H S, Bard A J . A study of the mechanism of the hydrogen evolution reaction on nickel by surface interrogation scanning electrochemical microscopy[J]. Journal of the American Chemical Society, 2017,139(13):4854-4858.
|
[21] |
Ahn H S, Bard A J . Assessment of the stability and operability of cobalt phosphide electrocatalyst for hydrogen evolution[J]. Analytical Chemistry, 2017,89(16):8574-8579.
doi: 10.1021/acs.analchem.7b02799
URL
|
[22] |
Wopschall R H, Shain I . Effects of adsorption of electroactive species in stationary electrode polarography[J]. Analytical Chemistry, 1967,39(13):1514-1527.
|
[23] |
Cuharuc A S, Zhang G, Unwin P R . Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): quantification and impacts of surface adsorption[J]. Physical Chemistry Chemical Physics, 2016,18(6):4966-4977.
|
[24] |
Zhang J, Jia J C, Han L H , et al. Kinetic investigation on the confined etching system of n-type gallium arsenide by scanning electrochemical microscopy[J]. Journal of Physical Chemistry C, 2014,118(32):18604-18611.
doi: 10.1021/jp5056446
URL
|
[25] |
Güell A G, Ebejer N, Snowden M E , et al. Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes[J]. Journal of the American Chemical Society, 2012,134(17):7258-7261.
|
[26] |
Zheng Q, Huang X M, Liu Y , et al. Electrochemical quantification of intermolecular hydrogen bonding between ferrocenemethanol and 3-mercaptopropanoic acid on gold[J]. Journal of Physical Chemistry C, 2017,121(40):22123-22129.
|
[27] |
Kobayashi K, Fujisaki F, Yoshimine T , et al. An analysis of the voltammetric adsorption waves of methyl viologen[J]. Bulletin of the Chemical Society of Japan, 1986,59(12):3715-3722.
|
[28] |
He P X, Crooks R M, Faulkner L R . Adsorption and electrode reactions of disulfonated anthraquinones at mercury electrodes[J]. Journal of Physical Chemistry, 1990,94(3):1135-1141.
|
[29] |
Zheng Q, Zhang J, Yang Y F , et al. Regulating the intermolecular hydrogen bonding: The reversible assembly and disassembly in the diffusion layer[J]. Journal of The Electrochemical Society, 2017,164(2):H97-H103.
|