(1) Matsui M, Chikazumi S. Analysis of anomalous thermal expansion coefficient of Fe–Ni Invar alloys[J]. Journal of the physical Society of Japan, 1978, 45(2): 458-465.
(2) Ustinovshikov Y, Shabanova I. A study of microstructures responsible for the emergence of the invar and permalloy effects in Fe–Ni alloys[J]. Journal of Alloys and Compounds, 2013, 578: 292-296.
(3) Michler T. Influence of gaseous hydrogen on the tensile properties of Fe–36Ni INVAR alloy[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11807-11809.
(4) Tseng A A, Müller J, Hahn Y H. Mechanical and bending characteristics of invar sheets[J]. Materials & Design, 1996, 17(2): 89-96.
(5) Yanchong Y, Weiqing C, Hongguang Z. Research on the hot ductility of Fe-36Ni invar alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 2969-2973.
(6) Gorria P, Martinez-Blanco D, Pérez M J, et al. Structure and magnetism of Fe-rich nanostructured Fe–Ni metastable solid solutions[J]. Journal of magnetism and magnetic materials, 2005, 294(2): 159-164.
(7) Vinogradov A, Hashimoto S, Kopylov V I. Enhanced strength and fatigue life of ultra-fine grain Fe–36Ni Invar alloy[J]. Materials Science and Engineering: A, 2003, 355(1): 277-285.
(8) Nadutov V M, Ustinov A I, Demchenkov S A, et al. Structure and properties of nanostructured vacuum-deposited foils of Invar Fe–(35–38 wt%) Ni alloys[J]. Journal of Materials Science & Technology, 2015, 31(11): 1079-1086.
(9) Rajanna K, Nayak M M. Strain sensitivity and temperature behavior of invar alloy films[J]. Materials Science and Engineering: B, 2000, 77(3): 288-292.
(10) Liu Y, Liu L, Shen B, et al. A study of thermal stability in electrodeposited nanocrystalline Fe–Ni invar alloy[J]. Materials Science and Engineering: A, 2011, 528(18): 5701-5705.
(11) McCrea J L, Palumbo G, Hibbard G D, et al. Properties and applications for electrodeposited nanocrystalline Fe-Ni alloys[J]. Reviews on Advanced Materials Science, 2003, 5(3): 252-258.
(12) Liu Y, Liu L, Li J, et al. Effect of 2-butyne-1, 4-diol on the microstructure and internal stress of electrodeposited Fe–36wt.% Ni alloy films[J]. Journal of alloys and compounds, 2009, 478(1): 750-753.
(13) Kim S H, Sohn H J, Joo Y C, et al. Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy[J]. Surface and Coatings Technology, 2005, 199(1): 43-48.
(14) Grimmett D L, Schwartz M, Nobe K. Pulsed Electrodeposition of Iron‐Nickel Alloys[J]. Journal of the Electrochemical Society, 1990, 137(11): 3414-3418.
(15) Lu L(卢琳), Liu T C(刘天成), Li P(李鹏), et al. 电沉积因瓦合金镀层成分的影响因素 [J]. Journal of University of Science and Technology Beijing(北京科技大学学报), 2008, 30(8): 903-907.
(16) Fleischmann M, Liler M. The anodic oxidation of solutions of plumbous salts. Part 1.—The kinetics of deposition of α-lead dioxide from acetate solutions[J]. Transactions of the Faraday Society, 1958, 54: 1370-1381.
(17) Fleischmann M, Thirsk H R. The potentiostatic study of the growth of deposits on electrodes[J]. Electrochimica Acta, 1959, 1(2): 146-160.
(18) Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
(19) Scharifker B R, Mostany J. Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 177(1-2): 13-23.
(20) Sluyters-Rehbach M, Wijenberg J, Bosco E, et al. The theory of chronoamperometry for the investigation of electrocrystallization: Mathematical description and analysis in the case of diffusion-controlled growth[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 236(1-2): 1-20.
(21) Heerman L, Tarallo A. Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth[J]. Journal of Electroanalytical Chemistry, 1999, 470(1): 70-76.
(22) Shi J P(史纪鹏), Yang F Z(杨防祖), Tian Z Q(田中群), et al. Electrocrystallization of Cu-Sn alloy on copper electrode surface[J]. Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(12): 2579-2584.
(23) Wu X Y(吴小英), Yang L K(杨丽坤), Yan H(闫慧), et al. Electrochemical nucleation of Au on n-type semiconductor silicon electrode surface[J]. Acta Physico-Chimica Sinica(物理化学学报), 2015, 31(9): 1708-1714.
(24) Yue J P(岳俊培), Yang F Z(杨防祖), Tian Z Q(田中群), et al. Electrocrystallization of Pd-Ni alloys on glassy carbon electrode[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(6): 1446-1450.
(25) Li P(李平), Xu J Y(许家园), Zhou S M(周绍民). Studies on Ni-Fe alloy codeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 1989, 5(06): 693-698.
(26) Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. Electrochimica Acta, 1983, 28(7): 917-923.
(27) Fletcher S, Halliday C S, Gates D, et al. The response of some nucleation/growth processes to triangular scans of potential[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1983, 159(2): 267-285.
(28) Feng G, Xiong Y, Wang H, et al. Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator[J]. Electrochimica Acta, 2008, 53(28): 8253-8257.
(29) Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: part I. general considerations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 225-239.
(30) Xu C(徐超), Chen F C(陈范才), Wu D M(吴道明), et al. 镍铁钨合金的电沉积行为研究[J]. Surface Technology(表面技术), 2010, 39(5): 26-29. |