[1] |
Croy J R, Abouimrane A, Zhang Z C , et al. Next-generation lithium-ion Batteries: The promise of near-term advancements[J]. MRS Bulletin, 2014,39(5):407-415.
doi: 10.1557/mrs.2014.84
URL
|
[2] |
Dunn B, Kamath H, Tarascon J M . Electrical energy storage for the grid: A battery of choices[J]. Science, 2011,334(6058):928-935.
doi: 10.1126/science.1212741
URL
|
[3] |
Goodenough J B . Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2013,7(1):14-18.
|
[4] |
Wang J X, Liu Z M, Yan G C , et al. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability[J]. Journal of Power Sources, 2016,329(5):553-557.
|
[5] |
Amine K, Kanno R, Tzeng Y H . Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS Bulletin, 2014,39(5):395-409.
|
[6] |
Tarascon J M, Armand M . Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359-367.
|
[7] |
Sun Y K, Myung S T, Park B C , et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8(4):320-324.
|
[8] |
The control and performance of Li4Mn5O12 and Li2MnO3 phase ratios in the lithium-rich cathode materials[J]. Electrochimica Acta, 2016,190:1142-1149.
|
[9] |
Yan J H, Liu X B, Li B Y . Recent progress in Li-rich layered oxidesas cathode materials for Li-ion batteries[J]. RSC Advances, 2014,4:63268-63284.
|
[10] |
Zhong S K, Hu P, Luo X , et al. Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning[J]. Ionics, 2016,22(11):2037-2044.
|
[11] |
Wu L, Lu J J, Wei G , et al. Synjournal and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2014,146:288-294.
|
[12] |
Chen H , IslamMS. Lithium extraction mechanism in Li-rich Li2MnO3 involvin goxygen hole formation and dimer-ization[J]. Chemistry of Materials, 2016,28(18):6656-6663.
|
[13] |
Matsunaga T, Komatsu H, Shimoda K , et al. Structural un-derstanding of superior battery properties of partially Ni-doped Li2MnO3 ascathode material[J]. The Journal of Physical Chemistry Letters, 2016,7(11):2063-2067.
|
[14] |
Cho E, Kim K, Jun C , et al. Overview of the oxygen behavior in the degradation of Li2MnO3 cathode material[J]. The Journal of Physical Chemistry C, 2017,121(39):21118-21127.
|
[15] |
Xiang Y H, Wu X W . Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping[J]. Ionics, 2018,24(1):83-89
doi: 10.1007/s11581-017-2189-4
URL
|
[16] |
Torres-Castro L, Shojan J, Julien C M , et al. Synjournal, characterization and electrochemical performance of Al-substituted Li2MnO3[J]. Materials Science and Engineering B - Advanced Functional Solid-State Materials, 2015,201:13-22.
|
[17] |
Matsunaga T, Komatsu H, Shimoda K , et al. Structural understanding of superior battery properties of partially Ni-doped Li2MnO3 as cathode material[J]. Journal of Phy-sical Chemistry Letters, 2016,7(11):2063-2067.
|
[18] |
Dong X, Xu Y L, Xiong L L , et al. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material[J]. Journal of Power Sources, 2013,243:78-87.
|
[19] |
Zhao W, Xiong L L, Xu Y L , et al. Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material[J]. Journal of Power Sources, 2016,330:37-44.
|
[20] |
Liu H, Du C Y, Yin G P , et al. An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(37):15640-15646.
doi: 10.1039/C4TA02947J
URL
|
[21] |
Sun Y K, Lee M J, Yoon C S , et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012,24(9):1192-1196.
|
[22] |
Myung S T, Izumi K, Komaba S , et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J]. Chemistry of Materials, 2005,17(14):3695-3704.
|
[23] |
Park J H, Yoon S J, Lee H Y , et al. Estimating the burden of psychiatric disorder in korea[J]. Journal of Preventive Medicine and Public Health, 2006,39(1):39-45.
|
[24] |
Thackeray M M, Kock A D, Rossouw M H , et al. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications[J]. Journal of The Electroche-mical Society, 1992,139(2):363-366.
|
[25] |
Sun Y K, Jeon Y S, Lee H K . Overcoming Jahn-Teller distortion for spinel Mn phase[J]. Electrochemical and Solid-State Letters, 2000,3(1):7-9.
doi: 10.1149/1.1390942
URL
|
[26] |
Yan P F, Xiao L, Zheng J M , et al. Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries[J]. Chemistry of Materials, 2015,27(3):975-982.
|
[27] |
Park S H, Myung S T, Oh S W , et al. Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3 V range[J]. Electrochimica Acta, 2006,51(19):4089-4095.
doi: 10.1016/j.electacta.2005.11.027
URL
|
[28] |
Bai Y, Jiang K, Sun S W , et al. Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration[J]. Electrochimica Acta, 2014,134:347-354.
doi: 10.1016/j.electacta.2014.04.155
URL
|
[29] |
Yu D Y W, Yanagida K, Kato Y , et al. Electrochemical activities in Li2MnO3[J]. Journal of The Electrochemical Society, 2009,156(6):A417-A424.
|
[30] |
Croy J R, Kim D, Balasubramanian M , et al. Countering the voltage decay in high capacity xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) for Li +-ion batteries [J]. Journal of The Electrochemical Society, 2012,159(6):A781-A790.
|
[31] |
Wang Q Y, Liu J, Murugan A V , et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability[J]. Journal of Materials Chemistry, 2009,19(28):4965-4972.
doi: 10.1039/b823506f
URL
|
[32] |
Liu J, Manthiram A . Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010,20(19):3961-3967.
doi: 10.1039/b925711j
URL
|