电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 175-189. doi: 10.13208/j.electrochem.191148
收稿日期:
2020-01-28
修回日期:
2020-03-12
出版日期:
2020-04-28
发布日期:
2020-03-13
通讯作者:
刘江
E-mail:jiangliu@scut.edu.cn
基金资助:
Received:
2020-01-28
Revised:
2020-03-12
Published:
2020-04-28
Online:
2020-03-13
Contact:
LIU Jiang
E-mail:jiangliu@scut.edu.cn
摘要:
碳是重要的能量载体. 直接碳固体氧化物燃料电池(DC-SOFC)是一种直接使用固体碳为燃料的能量转换装置,通过电化学反应,DC-SOFC可将碳所蕴含的化学能直接而连续地转换成电能,转换效率高,产生的CO2浓度高,易于捕集和后续处理. 本文系统地介绍DC-SOFC的结构组成、工作原理、研究现状和发展趋势,重点介绍了作者课题组在DC-SOFC研究方面的成果和进展,包括单电池和电池组的研制、采用生物质碳和煤炭为燃料时的性能和DC-SOFC在气电联产中的应用探索.
中图分类号:
刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学(中英文), 2020, 26(2): 175-189.
LIU Jiang, YAN Xiao-min. Direct Carbon Solid Oxide Fuel Cells[J]. Journal of Electrochemistry, 2020, 26(2): 175-189.
[1] | Birol F . World Energy Outlook 2018. IEA (International Energy Agency)[EB/OL]. Paris, 2018. . |
[2] | Chen S( 陈硕), Chen T( 陈婷 ). Air pollution and public health: Evidence from sulfur dioxide emission of coal-fired power station in China[J]. Economic Research Journal( 经济研究), 2014,49(8):158-169. |
[3] | Zou C N( 邹才能), Zhao Q( 赵群), Zhang G S( 张国生 ), et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry( 天然气工业), 2016,36(1):1-10. |
[4] | Dicks A L . The role of carbon in fuel cells[J]. Journal of Power Sources, 2006,156(2):128-141. |
[5] | Carlson E J . Program on technology innovation: systems assessment of direct carbon fuel cells technology. EPRI report[R]. Palo Alto: EPRI 2006. CA 1013362. |
[6] | Cao D X, Sun Y, Wang G L . Direct carbon fuel cell: fundamentals and recent developments[J]. Journal of Power Sources, 2007,167(2):250-257. |
[7] | Rady A C, Giddey S, Badwal S P S , et al. Review of fuels for direct carbon fuel cells[J]. Energy & Fuels, 2012,26(3):1471-1488. |
[8] | Giddey S, Badwal S P S, Kulkarni A , et al. A comprehensive review of direct carbon fuel cell technology[J]. Progress in Energy and Combustion Science, 2012,38(3):360-399. |
[9] | Gür T M . Critical review of carbon conversion in “carbon fuel cells”[J]. Chemical Reviews, 2013,113(8):6179-6206. |
[10] | Cao T Y, Huang K, Shi Y X . Recent advances in high-temperature carbon-air fuel cells[J]. Energy & Environmental Science, 2017,10(2):460-490. |
[11] | Zhong Y J, Su C, Cai R , et al. Process investigation of a solid carbon-fueled solid oxide fuel cell integrated with a CO2 permeating membrane and a sintering-resistant reverse Boudouard reaction catalyst[J]. Energy & Fuels, 2016,30(3):1841-1848. |
[12] | Kacprzak A, Kobylecki R, Bis Z . Influence of temperature and composition of NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbon fuel cell[J]. Journal of Power Sources, 2013,239:409-414. |
[13] | Guo L, Calo J M, Kearney C , et al. The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell[J]. Applied Energy, 2014,129:32-38. |
[14] | Zecevic S, Patton E M, Parhami P . Carbon-air fuel cell without a reforming process[J]. Carbon, 2004,42(10):1983-1993. |
[15] | Cooper J F, Selman R . Electrochemical oxidation of carbon for electric power generation: a review[J]. ECS Tran-sactions, 2009,19(14):15-25. |
[16] | Jia L J, Tian Y, Liu Q H , et al. A direct carbon fuel cell with(molten carbonate)/(doped ceria) composite electrolyte[J]. Journal of Power Sources, 2010,195(17):5581-5586. |
[17] | Elleuch A, Yu J S, Boussetta A , et al. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. International Journal of Hydrogen Energy, 2013,38(20):8514-8523. |
[18] | Liu J, Zhou M Y, Zhang Y P , et al. Electrochemical oxidation of carbon at high temperature: principles and applications[J]. Energy & Fuels, 2018,32(4):4107-4117. |
[19] | Nabae Y, Pointon K D, Irvine J T S . Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte[J]. Energy & Environmental Science, 2008,1(1):148-155. |
[20] | Jayakumar A, Küngas R, Roy S , et al. A direct carbon fuel cell with a molten antimony anode[J]. Energy & Environmental Science, 2011,4(10):4133-4137. |
[21] | Xu X Y, Zhou W, Liang F L , et al. A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell[J]. Applied Energy, 2013,108:402-409. |
[22] | Hao W B, He X J, Mi Y L . Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source[J]. Applied Energy, 2014,135:174-181. |
[23] | Elleuch A, Halouani K, Li Y D . Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel[J]. Journal of Power Sources, 2015,281:350-361. |
[24] | Yu J S, Zhao Y C, Li Y D . Utilization of corn cob biochar in a direct carbon fuel cell[J]. Journal of Power Sources, 2014,270:312-317. |
[25] | Jain S L, Lakeman J B, Pointon K D , et al. Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF[J]. Energy & Environmental Science, 2009,2(6):687-693. |
[26] | Jiang C R, Ma J J, Bonaccorso A D , et al. Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell[J]. Energy & Environmental Science, 2012,5(5):6973-6980. |
[27] | Ahn S Y, Eom S Y, Rhie Y H , et al. Utilization of wood biomass char in a direct carbon fuel cell(DCFC) system[J]. Applied Energy, 2013,105:207-216. |
[28] | Li S W, Lee A C, Mitchell R E , et al. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008,179(27/32):1549-1552. |
[29] | Wu Y Z, Su C, Zhang C M , et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications, 2009,11(6):1265-1268. |
[30] | Nakagawa N, Ishida M . Performance of an internal direct oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Industrial & Engineering Chemistry Research. 1988,27(7):1181-1185. |
[31] | Tang Y B, Liu J . Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010,35(20):11188-11193. |
[32] | Xie Y M, Tang Y B, Liu J . A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2013,17(1):121-127. |
[33] | Cai W Z, Liu J, Xie Y M , et al. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2016,20(8):2207-2216. |
[34] |
Xu H R, Chen B, Liu J , et al. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration[J]. Applied Energy, 2016,178:353-362.
doi: 10.1016/j.apenergy.2016.06.064 URL |
[35] |
Gür T M, Huggins R A . Direct electrochemical conversion of carbon to electrical energy in a high temperature fuel cell[J]. Journal of The Electrochemistry Society, 1992,139(10):L95-L97.
doi: 10.1149/1.2069025 URL |
[36] | Tang Y B, Liu J, Sui J . A novel direct carbon solid oxide fuel cell[J]. ECS Transactions, 2009,25(2):1109-1114. |
[37] | Tang Y B, Liu J . Fueling solid oxide fuel cells with activated carbon[J]. Acta Physico - Chimica Sinica, 2010,26(5):1191-1194. |
[38] | Liu J( 刘江), Tang Y B( 唐玉宝), Sui J( 隋静 ). A direct carbon solid oxide fuel cell: Chinese Patent, ZL200910192848.8[P]. December 28, 2011. |
[39] | Cai W Z, Liu J, Yu F Y , et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017,42(33):21167-21176. |
[40] | Xie Y M, Tang Y B, Liu J . An Al2O3-doped YSZ electrolyte-supporting solid oxide fuel cells fabricated by dip-coating and its direct operation on carbon fuel[J]. ECS Transactions, 2013,57(1):3039-3048. |
[41] | Zhang L, Xiao J, Xie Y M , et al. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2014,608:272-277. |
[42] | Bai Y H, Liu Y, Tang Y B , et al. Direct carbon solid oxide fuel cell - a potential high performance battery[J]. International Journal of Hydrogen Energy, 2011,36(15):9189-9194. |
[43] | Yu F Y, Zhang Y P, Yu L , et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. International Journal of Hydrogen Energy, 2016,41(21):9048-9058. |
[44] | Xiao J, Han D, Yu F Y , et al. Characterization of symmetrical SrFe0.75Mo0.25O3-δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016,688:939-945. |
[45] | Liu J( 刘江 ). Cone-shaped anode-supported solid oxide fuel cell/stack: Chinese Patent, ZL200510101483.3[P]. November 7, 2007. |
[46] | Timurkutluk B, Timurkutluk C, Mat M D , et al. A review on cell/stack designs for high performance solid oxide fuel cells[J]. Renewable and Sustainable Energy Reviews, 2016,56:1101-1121. |
[47] | Sui J, Liu J . An electrolyte-supported SOFC stack fabricated by slip casting technique[J]. ECS Transactions, 2007,7(1):633-637. |
[48] | Sui J, Liu J . Slip-cast Ce0.8Sm0.2O1.9 cone-shaped SOFC[J]. Journal of the American Ceramic Society, 2008,91(4):1335-1337. |
[49] | Zhang Y H, Liu J, Yin J , et al. Fabrication and performance of cone-shaped segmented-in-series solid oxide fuel cells[J]. International Journal of Applied Ceramic Technology, 2008,5(6):568-573. |
[50] | Bai Y H, Liu J, Gao H B , et al. Dip-coating technique in fabrication of cone-shaped anode-supported solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2009,480(2):554-557. |
[51] | Bai Y H, Liu J, Wang C L . Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip-coating technique[J]. International Journal of Hydrogen Energy, 2009,34(17):7311-7315. |
[52] | Ding J, Liu J . A novel design and performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack[J]. Journal of Power Sources, 2009,193(2):769-773. |
[53] | Xiao J, Liu J, Ding J . Electrochemical performance of cone-shaped tubular anode supported solid oxide fuel cells fabricated by low-pressure injection moulding technique[J]. ECS Transactions, 2011,35(1):609-614. |
[54] | Wang H D, Liu J . Effect of anode structure on performance of cone-shaped solid oxide fuel cells fabricated by phase inversion[J]. International Journal of Hydrogen Energy, 2012,37(5):4339-4345. |
[55] | Liu Y, Tang Y B, Ding J , et al. Electrochemical performance of cone-shaped anode-supported segmented-in-series SOFCs fabricated by gel-casting technique[J]. International Journal of Hydrogen Energy, 2012,37(1):921-925. |
[56] | Bai Y H, Wang C L, Ding J , et al. Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane[J]. Journal of Power Sources, 2010,195(12):3882-3886. |
[57] | Liu Y, Bai Y H, Liu J . Carbon monoxide fueled cone-shaped tubular solid oxide fuel cell with(Ni0.75Fe0.25-5%MgO)/YSZ anode(vol 160, F13, 2013)[J]. Journal of The Electrochemical Society, 2013,160(4):X5-X5. |
[58] | Wang X Q( 王晓强), Liu J( 刘江), Xie Y M( 谢永敏 ), et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. Acta Physico - Chimica Sinica( 物理化学学报), 2017,33(8):1614-1620. |
[59] | Liu J( 刘江), Zhang L( 张莉), Liu Y( 刘燕 ), et al. A solid oxide fuel cell stack based on a single piece of electrolyte plate: Chinese Patent, ZL201420173772.0[P]. October 8, 2014. |
[60] | Wang W, Liu Z J, Zhang Y P , et al. A direct carbon solid oxide fuel cell stack on a single electrolyte plate fabricated by tape casting technique[J]. Journal of Alloys and Compounds, 2019,794:294-302. |
[61] | Cai W Z, Zhou Q, Xie Y M , et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Applied Energy, 2016,179:1232-1241. |
[62] | Risnes H, Fjellerup J, Henriksen U , et al. Calcium addition in straw gasification[J]. Fuel, 2003,82(6):641-651. |
[63] | Quyn D M, Hayashi J, Li C Z . Volatilisation of alkali and alkaline earth metallic species during the gasification of a victorian brown coal in CO2[J]. Fuel Processing Techno-logy, 2005,86(12/13):1241-1251. |
[64] | Zhou Q, Cai W Z, Zhang Y P , et al. Electricity generation from corn cob char through a direct carbon solid oxide fuel cell[J]. Biomass and Bioenergy, 2016,91:250-258. |
[65] | Cai W Z, Liu J, Liu P P , et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw, International Journal of Energy Research, 2019,43(7):2468-2477. |
[66] | Qiu Q Y, Zhou M Y, Cai W Z , et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse[J]. Biomass and Bioenergy, 2019,121:56-63. |
[67] | Qiu Q Y( 丘倩媛), Chen Q Y( 陈倩阳), Liu Z J( 刘志军 ), et al. Biochar derived from coconut as fuel for the direct carbon solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology( 燃料化学学报), 2019,47(3):352-360. |
[68] | Xie Y M( 谢永敏), Li J L( 李江霖), Hou J X( 侯金醒 ), et al. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology( 燃料化学学报), 2018,46(10):1168-1174. |
[69] | Wu H, Xiao J, Zeng X Y , et al. A high performance direct carbon solid oxide fuel cell — a green pathway for brown coal utilization[J]. Applied Energy, 2019,248:679-687. |
[70] | Xie Y M, Xiao J, Liu D D , et al. Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode[J]. Journal of The Electrochemical Society, 2015,162(4):F397-F402. |
[1] | 应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究[J]. 电化学(中英文), 2022, 28(4): 2107141-. |
[2] | 韩平, 冯海涛, 董亚萍, 田森, 张波, 李武. 氢氧化钠水溶液体系中金属铬的电化学氧化过程[J]. 电化学(中英文), 2020, 26(3): 413-421. |
[3] | 赵 波, 姜 莉, 袁铭辉, 符显珠, 孙 蓉, 汪正平. 电化学法制备石墨烯及其复合材料[J]. 电化学(中英文), 2016, 22(1): 1-19. |
[4] | 李雪,薛梦,黄令*,李君涛,孙世刚. 钛基金属氧化物电极制备及其氨氮废水降解性能[J]. 电化学(中英文), 2015, 21(1): 78-84. |
[5] | 芦永红,董小波,王丽莎,刘燕,祝陈坚,徐海波*. 烟气吸收液中亚硝酸铵的电化学氧化处理技术[J]. 电化学(中英文), 2014, 20(1): 39-44. |
[6] | 王美丽, 桑林, 黄成德, . PdNiO/C在碱性介质中对甲醇的电氧化[J]. 电化学(中英文), 2007, 13(4): 377-381. |
[7] | 许娟, 黄桂萍, 李红, 朱伟, . 鲱鱼精DNA的电化学氧化及与组蛋白的相互作用[J]. 电化学(中英文), 2007, 13(4): 372-376. |
[8] | 刘咏, 刘丹, 赵仕林, 赖晶晶, . 苯酚在含氯体系中的电化学氧化[J]. 电化学(中英文), 2007, 13(1): 30-34. |
[9] | 邵玉艳;尹鸽平;高云智;史鹏飞;. 不同直径碳纳米管的抗电化学氧化性[J]. 电化学(中英文), 2006, 12(3): 288-291. |
[10] | 李天成,朱慎林. 电催化氧化技术处理苯酚废水研究[J]. 电化学(中英文), 2005, 11(1): 101-104. |
[11] | 肖美群,沈嘉年,李谋成,武朋飞,刘冬,张玉娟. Fe~(3+)离子对二氧化钛光电化学催化性能的影响[J]. 电化学(中英文), 2004, 10(4): 420-424. |
[12] | 刘月丽, 葛红花. 电化学氧化法去除苯酚研究[J]. 电化学(中英文), 2003, 9(4): 457-463. |
[13] | 张清松,吴辉煌. 苯酚在热氧化法制备的SnO_2/Ti电极上的电氧化研究[J]. 电化学(中英文), 1999, 5(4): 401-405. |
[14] | 张新胜,丁平,戴迎春,袁渭康. 苯在固定床反应器内电解制备对苯二醌[J]. 电化学(中英文), 1998, 4(3): 334-339. |
[15] | 富士川计吉,冯力. 差分电化学质谱法(DEMS)的回顾Ⅱ:DEMS方法在某些电极反应中的应用[J]. 电化学(中英文), 1996, 2(4): 362-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||