[1] |
Sun S G, Clavilier J . The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: an emirs study[J]. Journal of Electroanalytical Chemistry, 1988,240(1/2):147-159.
|
[2] |
Tian N, Zhou Z Y, Sun S G . Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles[J]. Journal of Physical Chemistry C, 2008,112(50):19801-19817.
doi: 10.1021/jp804051e
URL
|
[3] |
Krebs H J, Lüth H . Evidence for two different adsorption sites of CO on Pt(111) from infrared reflection spectroscopy[J]. Applied physics, 1977,14(4):337-342.
doi: 10.1007/BF00883436
URL
|
[4] |
Van Duyne R P, Haushalter J P . Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100)[J]. Journal of Physical Chemistry, 1983,87(16):2999-3003.
|
[5] |
Van Duyne R P, Haushalter J P, Janik-Czachor M , et al. Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces. 2. In situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon[J]. Journal of Physical Chemistry, 1985,89(19):4055-4061.
doi: 10.1021/j100265a026
URL
|
[6] |
Fleischmann M, Tian Z Q, Li L J . Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates[J]. Journal of Electroanalytical Chemistry, 1987,217(2):397-410.
|
[7] |
Anderson M S . Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000,76(21):3130-3132.
doi: 10.1063/1.126546
URL
|
[8] |
Li J F, Zhang Y J, Ding S Y , et al. Core-shell nanoparticle-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017,117(7):5002-5069.
doi: 10.1021/acs.chemrev.6b00596
URL
pmid: 28271881
|
[9] |
Li J F, Huang Y F, Ding Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010,464(7287):392-395.
doi: 10.1038/nature08907
URL
pmid: 20237566
|
[10] |
Cai W B, Wan L J, Noda H , et al. Orientational phase transition in a pyridine adlayer on gold(111) in aqueous solution studied by in situ infrared spectroscopy and scanning tunneling microscopy[J]. Langmuir, 1998,14(24):6992-6998.
doi: 10.1021/la980617i
URL
|
[11] |
Andreasen G, Vela M E, Salvarezza R C , et al. Dynamics of pyridine adsorption on gold(111) terraces in acid solution from in-situ scanning tunneling microscopy under potentiostatic control[J]. Langmuir, 1997,13(25):6814-6819.
doi: 10.1021/la970417r
URL
|
[12] |
Henglein F, Lipkowski J, Kolb D M . An optical study of pyridine adsorption on gold using synchrotron radiation[J]. Journal of Electroanalytical Chemistry, 1991,303(1/2):245-253.
|
[13] |
Li J F, Zhang Y J, Rudnev A V , et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: Correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface[J]. Journal of the American Chemical Society, 2015,137(6):2400-2408.
doi: 10.1021/ja513263j
URL
pmid: 25625429
|
[14] |
Wen B Y, Jin X, Li Y , et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces[J]. Analyst, 2016,141(12):3731-3736.
doi: 10.1039/c6an00180g
URL
pmid: 27001527
|
[15] |
Wen B Y, Yi J, Wang Y H , et al. In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy[J] Electrochemistry Communications, 2016,72:131-134.
doi: 10.1016/j.elecom.2016.08.026
URL
|
[16] |
Greeley J, Jaramillo T F, Bonde J . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006,5(11):909-913.
doi: 10.1038/nmat1752
URL
pmid: 17041585
|
[17] |
Kibler L A, El-Aziz A M, Hoyer R , et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005,44(14):2080-2084.
doi: 10.1002/anie.200462127
URL
pmid: 15712312
|
[18] |
Wang Y H, Liang M M, Zhang Y J , et al. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy[J]. Angewandte Chemie International Edition, 2018,130(35):11427-11431.
doi: 10.1002/anie.201805464
URL
pmid: 29998625
|
[19] |
Brankovic S R, Adžiĉ R R . Metal monolayer deposition by replacement of metal adlayers on electrode surfaces[J]. Surface Science, 2001,474(1/3):L173-L179.
doi: 10.1016/S0039-6028(00)01103-1
URL
|
[20] |
Schlaup C, Chorkendorff I . On the stability of copper overlayers on Au(111) and Au(100) electrodes under low potential conditions and in the presence on CO and CO2[J]. Surface Science, 2015,631:155-164.
doi: 10.1016/j.susc.2014.06.024
URL
|
[21] |
Kibler L A, Kleinert M, Randler R , et al. Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111)[J]. Surface Science, 1999,443(1/2):19-30.
doi: 10.1016/S0039-6028(99)00968-1
URL
|
[22] |
Zhong J H, Jin X, Yang Z L , et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution[J]. Nature Nanotechnology, 2016,12(2):132-136.
doi: 10.1038/nnano.2016.241
URL
pmid: 27870842
|
[23] |
Li C Y, Dong J C, Jin X , et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2015,137(24):7648-7651.
doi: 10.1021/jacs.5b04670
URL
pmid: 26052930
|
[24] |
Dong J C, Zhang X G, Briega-Martos V , et al. In situ Raman spectral evidence for oxygen reduction reaction intermediates at platinum single crystal surfaces[J]. Nature Energy, 2019,4:60-67.
doi: 10.1038/s41560-018-0292-z
URL
|