电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 41-53. doi: 10.13208/j.electrochem.181242
MatthewMSartin, 陈微, 贺凡, 陈艳霞*()
收稿日期:
2019-01-08
修回日期:
2019-03-06
出版日期:
2020-02-28
发布日期:
2019-03-12
通讯作者:
陈艳霞
E-mail:yachen@ustc.edu.cn
SARTIN Matthew M, CHEN Wei, HE Fan, CHEN Yan-xia*()
Received:
2019-01-08
Revised:
2019-03-06
Published:
2020-02-28
Online:
2019-03-12
Contact:
CHEN Yan-xia
E-mail:yachen@ustc.edu.cn
摘要:
本文从历史角度综述了二氧化碳在铜基催化剂上的还原机理的最新研究进展,对区分C1和C2产物路径发生的机制,以及调控二氧化碳还原产物选择性的影响因素和方法进行了重点阐述,着重讨论了如何利用电化学红外光谱与微分电化学质谱等技术在揭示反应机理方面的研究思路与方法学.
中图分类号:
MatthewMSartin, 陈微, 贺凡, 陈艳霞. 铜电极上二氧化碳还原机理的研究进展[J]. 电化学(中英文), 2020, 26(1): 41-53.
SARTIN Matthew M, CHEN Wei, HE Fan, CHEN Yan-xia. Recent Progress in the Mechanistic Understanding of CO2 Reduction on Copper[J]. Journal of Electrochemistry, 2020, 26(1): 41-53.
Fig. 1
Overview of the possible pathways for electrochemical reduction of CO2 to C1 and C2 products. The major products are written in blue, and minor products are in red. Steps denoted as “slow” are potentially rate-determining for a specific pathway and can be used to control the reaction path. The two CO2- species are marked by an asterisk to indicate which part of the molecule is adsorbed to the electrode surface.
Fig. 2
IR spectra obtained at various applied potentials during a CV carried out in 1 atm CO2-saturated 0.1 mol·L-1 NaHCO3. Reproduced from Ref.[24] with permission from the American Chemical Society. (Direct link: https://pubs.acs.org/doi/10.1021/acscentsci.6b00155. Further permissions related to the material excerpted should be directed to the ACS)
Fig. 3
Faradaic current and mass signals for species generated during a single cyclic voltammogram carried out in 0.05 mol·L-1 (A) glycolaldehyde (blue), glyoxal (green) and (B) ethylene oxide in a phosphate buffer solution (pH = 7) at a scan rate of 1 mV·s-1. Reproduced from Ref.[28] with permission from the Royal Society of Chemistry.
Fig. 4
Faradaic currents and mass signals for m/z = 15 (blue) and m/z = 29, 30, 31 (green) generated during a single cyclic voltammogram carried out in 0.05 mol·L-1 formaldehyde in a phosphate buffer solution (pH = 7) at a scan rate of 1 mV·s-1. Reproduced from Ref.[28] with permission from The Royal Society of Chemistry
Fig. 6
Depiction of the strongly-hydrated Na+ separated from the C2O2 intermediate of the C2 pathway (gray and green circles represent carbon and oxygen, respectively, on the copper surface) by hydration layer, and weakly-hydrated Cs+ in close proximity to the C2O2 intermediate. The y-axis depicts the qualitative effect on the energy of the reaction intermediate.
Fig. 7
(A) Copper atoms arranged to form a (100) surface, with CO molecules (gray and green concentric circles represent carbon and oxygen, respectively) bound to bridge sites to form C2O2. (B) Copper atoms arranged to form a (111) surface with CO molecules bound at bridge sites too close to easily form C2O2.
[1] |
Yang H Q, Xu Z H, Fan M H , et al. Progress in carbon dioxide separation and capture: A review[J]. Journal of Environmental Sciences, 2008,20(1):14-27.
doi: 10.1016/s1001-0742(08)60002-9 URL pmid: 18572517 |
[2] | Mikkelsen M, Jørgensen M, Krebs F C . The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy & Environmental Science, 2010,3(1):43-81. |
[3] | Hori Y, Kikuchi K, Murata A , et al. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1986,6:897-898. |
[4] | Kuhl K P, Cave E R, Abram D N , et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012,5(5):7050-7059. |
[5] |
Ting L R L, Yeo B S . Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide[J]. Current Opinion in Electrochemistry, 2018,8:126-134.
doi: 10.1021/acs.chemrev.7b00459 URL pmid: 29319300 |
[6] |
Raciti D, Wang C . Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Letters, 2018,3(7):1545-1556.
doi: 10.1021/acs.accounts.9b00496 URL pmid: 31913013 |
[7] |
Kortlever R, Shen J, Schouten K J P , et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters, 2015,6(20):4073-4082.
doi: 10.1021/acs.jpclett.5b01559 URL pmid: 26722779 |
[8] | Tian Z Q, Priest C, Chen L . Recent progress in the theoretical investigation of electrocatalytic reduction of CO2[J]. Advanced Theory and Simulations, 2018,1(5):1800004. |
[9] |
Rendón-Calle A, Builes S, Calle-Vallejo F . A brief review of the computational modeling of CO2 electroreduction on Cu electrodes[J]. Current Opinion in Electrochemistry, 2018,9:158-165.
doi: 10.1016/j.coelec.2018.03.012 URL |
[10] |
Yoo J S, Christensen R, Vegge T , et al. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid[J]. ChemSusChem, 2016,9(4):358-363.
doi: 10.1002/cssc.201501197 URL pmid: 26663854 |
[11] |
Costentin C, Robert M, Saveant J M . Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013,42(6):2423-2436.
doi: 10.1039/c2cs35360a URL pmid: 23232552 |
[12] |
Qiao J L, Liu Y Y, Hong F , et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
doi: 10.1039/c3cs60323g URL pmid: 24186433 |
[13] |
Kumar B, Brian J P, Atla V , et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016,270:19-30.
doi: 10.1021/la9019475 URL pmid: 19572538 |
[14] | Hori Y . Electrochemical CO2 reduction on metal electrodes[M]//Modern Aspects of Electrochemistry, Vayenas C G, White R E, Gamboa-Aldeco M E (Eds.), Springer, New York, 200:89-189. |
[15] |
Bagger A, Wen Ju, Varela A S , et al. Electrochemical CO2 reduction: A classification problem[J]. ChemPhys-Chem, 2017,18(22):3266-3273.
doi: 10.1002/cphc.201700736 URL pmid: 28872756 |
[16] |
Quaino P, Juarez F, Santos E , et al. Volcano plots in hydrogen electrocatalysis uses and abuses[J]. Beilstein Journal of Nanotechnology, 2014,5:846-854.
doi: 10.3762/bjnano.5.96 URL pmid: 24991521 |
[17] | Trasatti S . Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972,39(1):163-184. |
[18] | Sarkar S, Peter S C . An overview on Pd-based electrocatalysts for the hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2018,5(9):2060-2080. |
[19] | Jung N, Cho Y H, Ahn M , et al. Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome methanol crossover effects for direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2011,36(24):15731-15738. |
[20] |
Chung D Y, Kim H I, Chung Y H , et al. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell[J]. Scientific Reports, 2014,4:7450.
doi: 10.1038/srep07450 URL pmid: 25502744 |
[21] | Feaster J T, Shi C, Cave E R , et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017,7(7):4822-4827. |
[22] |
Chen Y H, Kanan M W . Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012,134(4):1986-1989.
doi: 10.1021/ja2108799 URL pmid: 22239243 |
[23] |
Baruch M F, Pander J E, White J L , et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy[J]. ACS Catalysis, 2015,5(5):3148-3156.
doi: 10.1021/acscatal.5b00402 URL |
[24] |
Luc W, Collins C, Wang S , et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017,139(5):1885-1893.
doi: 10.1021/jacs.6b10435 URL pmid: 28094994 |
[25] | Lee C H, Kanan M W . Controlling H+ vs. CO2 reduction selectivity on Pb electrodes [J]. ACS Catalysis, 2015,5(1):465-469. |
[26] |
DiMeglio J L, Rosenthal J . Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst[J]. Journal of the American Chemical Society, 2013,135(24):8798-8801.
doi: 10.1021/ja4033549 URL pmid: 23735115 |
[27] | Zhao S, Jin R X, Jin R C . Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Letters, 2018,3(2):452-462. |
[28] |
Rosen B A, Salehi-Khojin A, Thorson M R , et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334(6056):643-644.
doi: 10.1126/science.1209786 URL pmid: 21960532 |
[29] |
Hatsukade T, Kuhl K P, Cave E R , et al. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Physical Chemistry Chemical Physics, 2014,16(27):13814-13819.
doi: 10.1039/c4cp00692e URL pmid: 24915537 |
[30] |
Kuhl K P, Hatsukade T, Cave E R , et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces[J]. Journal of the American Chemical Society, 2014,136(40):14107-14113.
doi: 10.1021/ja505791r URL pmid: 25259478 |
[31] | Blyholder G . Molecular orbital view of chemisorbed carbon monoxide[J]. Journal of Chemical Physics, 1964,68(10):2772-2777. |
[32] | Föhlisch A, Nyberg M, Bennich P , et al. The bonding of CO to metal surfaces[J]. Journal of Chemical Physics, 2000,112(4):1946-1958. |
[33] |
Koper M T M, van Santen R A, Wasileski S A , et al. Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces[J]. Journal of Chemical Physics, 2000,113(10):4392-4407.
doi: 10.1063/1.1288592 URL |
[34] | Yoshio H, Katsuhei K, Shin S . Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985,14(11):1695-1698. |
[35] |
Wuttig A, Liu C, Peng Q L , et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis[J]. ACS Central Science, 2016,2(8):522-528.
doi: 10.1021/acscentsci.6b00155 URL pmid: 27610413 |
[36] | Hori Y, Koga O, Watanabe Y , et al. FTIR measurements of charge displacement adsorption of CO on poly- and single crystal (100) of Cu electrodes[J]. Electrochimica Acta, 1998,44:1389-1395. |
[37] | Saussey J, Lavalley J C, Lamotte J , et al. I.R. spectroscopic evidence of formyl species formed by CO and H2 Co-adsorption on ZnO and Cu-ZnO[J]. Journal of the Chemical Society, Chemical Communications, 1982,5:278-279. |
[38] |
Hori Y, Takahashi R, Yoshinami Y , et al. Electrochemical reduction of CO at a copper electrode[J]. Journal of Physical Chemistry B, 1997,101(36):7075-7081.
doi: 10.1021/acsami.9b16862 URL pmid: 31815424 |
[39] | Qi L J, Liu S P, Gao W , et al. Mechanistic understanding of CO2 electroreduction on Cu2O[J]. Journal of Physical Chemistry C, 2018,122(10):5472-5480. |
[40] |
Nie X W, Esopi M R, Janik M J , et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013,52(9):2459-2462.
doi: 10.1002/anie.201208320 URL pmid: 23345201 |
[41] | Schouten K J P, Kwon Y, van der Ham C J M , et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J]. Chemical Science, 2011,2(10):1902-1909. |
[42] | Kyriacou G, Anagnostopoulos A . Electroreduction of CO2 on differently prepared copper electrodes: The influence of electrode treatment on the current efficiences[J]. Journal of Electroanalytical Chemistry, 1992,322(1/2):233-246. |
[43] |
Shiratsuchi R, Aikoh Y, Nogami G . Pulsed electroreduction of CO2 on copper electrodes[J]. Journal of The Electrochemical Society, 1993,140(12):3479-3482.
doi: 10.1149/1.2221113 URL |
[44] |
Kimura K W, Fritz K E, Kim J , et al. Controlled selectivity of CO2 reduction on copper by pulsing the electrochemical potential[J]. ChemSusChem, 2018,11(11):1781-1786.
doi: 10.1002/cssc.201800318 URL pmid: 29786966 |
[45] |
Wang L, Nitopi S A, Bertheussen E , et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products[J]. ACS Ca-talysis, 2018,8(8):7445-7454.
doi: 10.1021/acsnano.8b03513 URL pmid: 30010321 |
[46] | Peterson A A, Abild-Pedersen F, Studt F , et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010,3(9):1311-1315. |
[47] |
Pérez-Gallent E, Figueiredo M C, Calle-Vallejo F , et al. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes[J]. Angewandte Chemie International Edition, 2017,129(13):3621-3624.
doi: 10.1002/anie.201700580 URL pmid: 28230297 |
[48] |
Schouten K J P, Qin Z, Pérez Gallent E , et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes[J]. Journal of the American Chemical Society, 2012,134(24):9864-9867.
doi: 10.1021/ja302668n URL pmid: 22670713 |
[49] |
Luo W J, Nie X W, Janik M J , et al. Facet dependence of CO2 reduction paths on Cu electrodes[J]. ACS Catalysis, 2016,6(1):219-229.
doi: 10.1021/acscatal.5b01967 URL |
[50] |
Montoya J H, Shi C, Chan K , et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction[J]. Journal of Physical Chemistry Letters, 2015,6(11):2032-2037.
doi: 10.1021/acs.jpclett.5b00722 URL pmid: 26266498 |
[51] |
Xiao H, Cheng T, Goddard W A , et al. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111)[J]. Journal of the American Chemical Society, 2016,138(2):483-486.
doi: 10.1021/jacs.5b11390 URL pmid: 26716884 |
[52] |
Cheng T, Xiao H, Goddard W A . Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0[J]. Journal of Physical Chemistry Letters, 2015,6(23):4767-4773.
doi: 10.1021/acs.jpclett.5b02247 URL pmid: 26562750 |
[53] |
Goodpaster J D, Bell A T, Head-Gordon M . Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model[J]. Journal of Physical Chemistry Letters, 2016,7(8):1471-1477.
doi: 10.1021/acs.jpclett.6b00358 URL pmid: 27045040 |
[54] | Garza A J, Bell A T, Head-Gordon M . Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catalysis, 2018,8(2):1490-1499. |
[55] |
Dunwell M, Yan Y S, Xu B J . Understanding the influence of the electrochemical double-layer on heterogeneous electrochemical reactions[J]. Current Opinion in Chemical Engineering, 2018,20:151-158.
doi: 10.1021/nn503780b URL pmid: 25211307 |
[56] | Zhu S Q, Jiang B, Cai W B , et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. 2017,139(44):15664-15667. |
[57] | Resasco J, Lum Y, Clark E , et al. Effects of anion identity and concentration on electrochemical reduction of CO2[J]. ChemElectroChem, 2018,5(7):1064-1072. |
[58] | Akira M, Yoshio H . Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode[J]. Bulletin of the Chemical Society of Japan, 1991,64(1):123-127. |
[59] |
Singh M R, Kwon Y, Lum Y , et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016,138(39):13006-13012.
doi: 10.1021/jacs.6b07612 URL pmid: 27626299 |
[60] |
Pérez-Gallent E, Marcandalli G, Figueiredo M C , et al. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes[J]. Journal of the American Chemical Society, 2017,139(45):16412-16419.
doi: 10.1021/jacs.7b10142 URL pmid: 29064691 |
[61] |
Resasco J, Chen L D, Clark E , et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2017,139(32):11277-11287.
doi: 10.1021/jacs.7b06765 URL pmid: 28738673 |
[62] | Hori Y, Wakebe H, Tsukamoto T , et al. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons[J]. Surface Science, 1995,335:258-263. |
[63] |
Li H J, Li Y d, Koper M T M , et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014,136(44):15694-15701.
doi: 10.1021/ja508649p URL pmid: 25314268 |
[64] |
Shaw S K, Berna A, Feliu J M , et al. Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes[J]. Physical Chemistry Chemical Physics, 2011,13(12):5242-5251.
doi: 10.1039/c0cp02064h URL pmid: 21253640 |
[65] | Salimon J, Hernández-Romero R M, Kalaji M . The dynamics of the conversion of linear to bridge bonded CO on Cu[J]. Journal of Electroanalytical Chemistry, 2002,538:99-108. |
[66] |
Gunathunge C M, Ovalle V J, Li Y , et al. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH[J]. ACS Catalysis, 2018,8(8):7507-7516.
doi: 10.1021/acscatal.8b01552 URL |
[67] |
Baricuatro J H, Kim Y G, Korzeniewski C L , et al. Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials[J]. Electrochemistry Communication, 2018,91:1-4.
doi: 10.1016/j.elecom.2018.04.016 URL |
[68] |
Huang Y, Handoko A D, Hirunsit P , et al. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene[J]. ACS Catalysis, 2017,7(3):1749-1756.
doi: 10.1021/acscatal.6b03147 URL |
[69] | Zhang R G, Hao X B, Duan T , et al. Adsorption and activation of CO and H2, the corresponding equilibrium phase diagrams under different temperature and partial pressures over Cu(100) surface: Insights into the effects of coverage and solvent effect[J]. Fuel Processing Technology, 2017,156:253-264. |
[70] | Hussain A . Beneficial effect of Cu on a Cu-modified Au catalytic surface for CO oxidation reaction: A DFT study[J]. Journal of Physical Chemistry C, 2013,117(10):5084-5094. |
[71] | Dunwell M, Yang X, Yan Y S , et al. Potential routes and mitigation strategies for contamination in interfacial specific infrared spectroelectrochemical studies[J]. Journal of Physical Chemistry C, 2018,122(43):24658-24664. |
[72] | Sartin M M, Yu Z Y, Chen W , et al. Effect of particle shape and electrolyte cation on CO adsorption to copper oxide nanoparticle electrocatalysts[J]. Journal of Physical Chemistry C, 2018,122(46):26489-26498. |
[1] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[2] | Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成. 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2021, 27(3): 278-290. |
[3] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[4] | 庄志华, 陈卫. 原子数精确的金属纳米团簇在电催化领域的应用研究进展[J]. 电化学(中英文), 2021, 27(2): 125-143. |
[5] | 李金翰, 程方益. 惰性小分子电催化还原反应的电解液调控[J]. 电化学(中英文), 2020, 26(4): 474-485. |
[6] | 范佳, 韩娜, 李彦光. 基于流动池的电化学二氧化碳还原研究进展[J]. 电化学(中英文), 2020, 26(4): 510-520. |
[7] | 张旭锐, 邵晓琳, 易 金, 刘予宇, 张久俊. 水溶液中二氧化碳电还原技术的发展现状、挑战及对策[J]. 电化学(中英文), 2019, 25(4): 413-425. |
[8] | 杨 帆, 邓培林, 韩优嘉, 潘 静, 夏宝玉. 电化学二氧化碳还原中的铜基催化剂[J]. 电化学(中英文), 2019, 25(4): 426-444. |
[9] | 周 睿, 韩 娜, 李彦光. 铋基二氧化碳还原电催化材料研究进展[J]. 电化学(中英文), 2019, 25(4): 445-454. |
[10] | 张月凤, 刘建军, 危增曦, 田欣欣, 马建民. 单层含氧缺陷δ-MnO2用于二氧化碳还原[J]. 电化学(中英文), 2019, 25(4): 477-485. |
[11] | 张宝花, 张进涛. 氧化还原刻蚀铜表面对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2019, 25(4): 497-503. |
[12] | 武 烈, 孙建龙, 姜秀娥. 表面增强红外吸收光谱——表面敏感的原位免标记光谱电化学技术[J]. 电化学(中英文), 2019, 25(2): 202-222. |
[13] | 李宏, 蔡文斌. 能源与电催化的碰撞—第一届能源电催化青年科学家论坛会议评述[J]. 电化学(中英文), 2018, 24(2): 194-196. |
[14] | 李 丹,金葆康. 大黄素的电化学氧化还原机理研究[J]. 电化学(中英文), 2017, 23(3): 347-355. |
[15] | 张三佩, 温兆银, 靳 俊, 吴相伟, 胡英瑛, 吴梅芬. 二次钠-空气电池的研究进展[J]. 电化学(中英文), 2015, 21(5): 425-432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||